Cantitate/Preț
Produs

Gaussian Capacity Analysis: Lecture Notes in Mathematics, cartea 2225

Autor Liguang Liu, Jie Xiao, Dachun Yang, Wen Yuan
en Limba Engleză Paperback – 21 sep 2018
This monograph develops the Gaussian functional capacity theory with applications to restricting the Gaussian Campanato/Sobolev/BV space. Included in the text is a new geometric characterization of the Gaussian 1-capacity and the Gaussian Poincaré 1-inequality.  Applications to function spaces and geometric measures are also presented.
This book will be of use to researchers who specialize in potential theory, elliptic differential equations, functional analysis, probability, and geometric measure theory. 
Citește tot Restrânge

Din seria Lecture Notes in Mathematics

Preț: 34223 lei

Nou

Puncte Express: 513

Preț estimativ în valută:
6554 6753$ 5491£

Carte tipărită la comandă

Livrare economică 22 februarie-08 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783319950396
ISBN-10: 3319950398
Pagini: 102
Ilustrații: IX, 108 p. 1 illus.
Dimensiuni: 155 x 235 x 13 mm
Greutate: 0.18 kg
Ediția:1st ed. 2018
Editura: Springer International Publishing
Colecția Springer
Seria Lecture Notes in Mathematics

Locul publicării:Cham, Switzerland

Cuprins

Gaussian Sobolev p-space.- Gaussian Campanato (p, k)-class.- Gaussian p-capacity.- Restriction of Gaussian Sobolev p-space.- Gaussian 1-capacity to Gaussian ∞-capacity.- Gaussian BV-capacity.

Textul de pe ultima copertă

This monograph develops the Gaussian functional capacity theory with applications to restricting the Gaussian Campanato/Sobolev/BV space. Included in the text is a new geometric characterization of the Gaussian 1-capacity and the Gaussian Poincaré 1-inequality.  Applications to function spaces and geometric measures are also presented.
This book will be of use to researchers who specialize in potential theory, elliptic differential equations, functional analysis, probability, and geometric measure theory.  

Caracteristici

The first book presenting a systematic study of the Sovolev/BV capacity theory in the Gaussian setting Provides fundamental material for a cross-disciplinary field Provides interesting applications in the geometry of Gaussian space