Cantitate/Preț
Produs

Generalized Normalizing Flows via Markov Chains: Elements in Non-local Data Interactions: Foundations and Applications

Autor Paul Lyonel Hagemann, Johannes Hertrich, Gabriele Steidl
en Limba Engleză Paperback – feb 2023
Normalizing flows, diffusion normalizing flows and variational autoencoders are powerful generative models. This Element provides a unified framework to handle these approaches via Markov chains. The authors consider stochastic normalizing flows as a pair of Markov chains fulfilling some properties, and show how many state-of-the-art models for data generation fit into this framework. Indeed numerical simulations show that including stochastic layers improves the expressivity of the network and allows for generating multimodal distributions from unimodal ones. The Markov chains point of view enables the coupling of both deterministic layers as invertible neural networks and stochastic layers as Metropolis-Hasting layers, Langevin layers, variational autoencoders and diffusion normalizing flows in a mathematically sound way. The authors' framework establishes a useful mathematical tool to combine the various approaches.
Citește tot Restrânge

Preț: 14223 lei

Nou

Puncte Express: 213

Preț estimativ în valută:
2722 2818$ 2301£

Carte tipărită la comandă

Livrare economică 06-20 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781009331005
ISBN-10: 1009331000
Pagini: 75
Dimensiuni: 153 x 228 x 7 mm
Greutate: 0.1 kg
Editura: Cambridge University Press
Colecția Cambridge University Press
Seria Elements in Non-local Data Interactions: Foundations and Applications

Locul publicării:Cambridge, United Kingdom

Cuprins

1. Introduction; 2. Preliminaries; 3. Normalizing Flows; 4. Stochastic Normalizing Flows; 5. Stochastic Layers; 6. Conditional Generative Modeling; 7. Numerical Results; 8. Conclusions and Open Questions; References.

Descriere

This Element provides a unified framework to handle various approaches to generative models via Markov chains.