Cantitate/Preț
Produs

Generative Adversarial Networks in Practice

Autor Mehdi Ghayoumi
en Limba Engleză Hardback – 20 dec 2023
This book is an all-inclusive resource that provides a solid foundation on Generative Adversarial Networks (GAN) methodologies, their application to real-world projects, and their underlying mathematical and theoretical concepts.
Key Features:
  • Guides you through the complex world of GANs, demystifying their intricacies
  • Accompanies your learning journey with real-world examples and practical applications
  • Navigates the theory behind GANs, presenting it in an accessible and comprehensive way
  • Simplifies the implementation of GANs using popular deep learning platforms
  • Introduces various GAN architectures, giving readers a broad view of their applications
  • Nurture your knowledge of AI with our comprehensive yet accessible content
  • Practice your skills with numerous case studies and coding examples
  • Reviews advanced GANs, such as DCGAN, cGAN, and CycleGAN, with clear explanations and practical examples
  • Adapts to both beginners and experienced practitioners, with content organized to cater to varying levels of familiarity with GANs
  • Connects the dots between GAN theory and practice, providing a well-rounded understanding of the subject
  • Takes you through GAN applications across different data types, highlighting their versatility
  • Inspires the reader to explore beyond this book, fostering an environment conducive to independent learning and research
  • Closes the gap between complex GAN methodologies and their practical implementation, allowing readers to directly apply their knowledge
  • Empowers you with the skills and knowledge needed to confidently use GANs in your projects
Prepare to deep dive into the captivating realm of GANs and experience the power of AI like never before with Generative Adversarial Networks (GANs) in Practice. This book brings together the theory and practical aspects of GANs in a cohesive and accessible manner, making it an essential resource for both beginners and experienced practitioners.
Citește tot Restrânge

Preț: 43854 lei

Preț vechi: 62618 lei
-30% Nou

Puncte Express: 658

Preț estimativ în valută:
8392 8829$ 6948£

Carte tipărită la comandă

Livrare economică 15-29 ianuarie 25
Livrare express 10-14 decembrie pentru 29241 lei

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781032248448
ISBN-10: 1032248440
Pagini: 670
Ilustrații: 10 Tables, black and white; 121 Line drawings, color; 66 Line drawings, black and white; 28 Halftones, color; 1 Halftones, black and white; 149 Illustrations, color; 67 Illustrations, black and white
Dimensiuni: 178 x 254 x 43 mm
Greutate: 1.37 kg
Ediția:1
Editura: CRC Press
Colecția Chapman and Hall/CRC
Locul publicării:Boca Raton, United States

Public țintă

Adult education, Further/Vocational Education, General, and Professional Reference

Cuprins

1. Introduction
2. Data Preprocessing
3. Model Evaluation
4. TensorFlow and Keras Fundamentals
5. Artificial Neural Networks Fundamentals and Architectures
6. Deep Neural Networks (DNNs) Fundamentals and Architectures
7. Generative Adversarial Networks (GANs) Fundamentals and Architectures
8. Deep Convolutional Generative Adversarial Networks (DCGANs)
9. Conditional Generative Adversarial Network (cGAN)
10. Cycle Generative Adversarial Network (CycleGAN)
11. Semi-Supervised Generative Adversarial Network (SGAN)
12. Least Squares Generative Adversarial Network (LSGAN)
13. Wasserstein Generative Adversarial Network (WGAN)
14. Generative Adversarial Networks (GANs) for Images
15. Generative Adversarial Networks (GANs) for Voice, Music, and Song
Appendix

Notă biografică

Dr. Mehdi Ghayoumi is an Assistant Professor at the State University of New York (SUNY) at Canton. With a strong focus on cutting-edge technologies, he has dedicated his expertise to areas including Machine Learning, Machine Vision, Robotics, Human-Robot Interaction (HRI), and privacy. Dr. Ghayoumi’s research revolves around constructing sophisticated systems tailored to address the complexities and challenges within these fields, driving innovation and advancing the forefront of knowledge in his respective areas of expertise.

Descriere

Generative Adversarial Networks (GANs) in Practice is an all-inclusive resource that provides a solid foundation on GAN methodologies, their application to real-world projects, and their underlying mathematical and theoretical concepts.