Cantitate/Preț
Produs

Geometric Analysis: Cambridge Studies in Advanced Mathematics, cartea 134

Autor Peter Li
en Limba Engleză Hardback – 2 mai 2012
The aim of this graduate-level text is to equip the reader with the basic tools and techniques needed for research in various areas of geometric analysis. Throughout, the main theme is to present the interaction of partial differential equations and differential geometry. More specifically, emphasis is placed on how the behavior of the solutions of a PDE is affected by the geometry of the underlying manifold and vice versa. For efficiency the author mainly restricts himself to the linear theory and only a rudimentary background in Riemannian geometry and partial differential equations is assumed. Originating from the author's own lectures, this book is an ideal introduction for graduate students, as well as a useful reference for experts in the field.
Citește tot Restrânge

Din seria Cambridge Studies in Advanced Mathematics

Preț: 52496 lei

Preț vechi: 58984 lei
-11% Nou

Puncte Express: 787

Preț estimativ în valută:
10054 10358$ 8422£

Carte tipărită la comandă

Livrare economică 24 februarie-10 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781107020641
ISBN-10: 1107020646
Pagini: 418
Ilustrații: black & white illustrations
Dimensiuni: 152 x 229 x 28 mm
Greutate: 0.73 kg
Ediția:New.
Editura: Cambridge University Press
Colecția Cambridge University Press
Seria Cambridge Studies in Advanced Mathematics

Locul publicării:New York, United States

Cuprins

Introduction; 1. First and second variational formulas for area; 2. Volume comparison theorem; 3. Bochner–Weitzenböck formulas; 4. Laplacian comparison theorem; 5. Poincaré inequality and the first eigenvalue; 6. Gradient estimate and Harnack inequality; 7. Mean value inequality; 8. Reilly's formula and applications; 9. Isoperimetric inequalities and Sobolev inequalities; 10. The heat equation; 11. Properties and estimates of the heat kernel; 12. Gradient estimate and Harnack inequality for the heat equation; 13. Upper and lower bounds for the heat kernel; 14. Sobolev inequality, Poincaré inequality and parabolic mean value inequality; 15. Uniqueness and maximum principle for the heat equation; 16. Large time behavior of the heat kernel; 17. Green's function; 18. Measured Neumann–Poincaré inequality and measured Sobolev inequality; 19. Parabolic Harnack inequality and regularity theory; 20. Parabolicity; 21. Harmonic functions and ends; 22. Manifolds with positive spectrum; 23. Manifolds with Ricci curvature bounded from below; 24. Manifolds with finite volume; 25. Stability of minimal hypersurfaces in a 3-manifold; 26. Stability of minimal hypersurfaces in a higher dimensional manifold; 27. Linear growth harmonic functions; 28. Polynomial growth harmonic functions; 29. Lq harmonic functions; 30. Mean value constant, Liouville property, and minimal submanifolds; 31. Massive sets; 32. The structure of harmonic maps into a Cartan–Hadamard manifold; Appendix A. Computation of warped product metrics; Appendix B. Polynomial growth harmonic functions on Euclidean space; References; Index.

Recenzii

"This monograph is a beautiful introduction to geometric analysis."
Frederic Robert, Mathematical Reviews

Notă biografică


Descriere

This graduate-level text demonstrates the basic techniques for researchers interested in the field of geometric analysis.