Geometric Etudes in Combinatorial Mathematics
Autor Alexander Soiferen Limba Engleză Paperback – 15 iun 2010
Preț: 445.77 lei
Nou
Puncte Express: 669
Preț estimativ în valută:
85.31€ • 88.62$ • 70.86£
85.31€ • 88.62$ • 70.86£
Carte tipărită la comandă
Livrare economică 01-15 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780387754697
ISBN-10: 0387754695
Pagini: 264
Ilustrații: XXXVI, 264 p. 332 illus.
Dimensiuni: 155 x 235 x 16 mm
Greutate: 0.43 kg
Ediția:2nd ed. 2010
Editura: Springer
Colecția Springer
Locul publicării:New York, NY, United States
ISBN-10: 0387754695
Pagini: 264
Ilustrații: XXXVI, 264 p. 332 illus.
Dimensiuni: 155 x 235 x 16 mm
Greutate: 0.43 kg
Ediția:2nd ed. 2010
Editura: Springer
Colecția Springer
Locul publicării:New York, NY, United States
Public țintă
Lower undergraduateCuprins
ORIGINAL ETUDES.- Tiling a Checker Rectangle.- Proofs of Existence.- A Word About Graphs.- Ideas of Combinatorial Geometry.- NEW LANDSCAPE, OR THE VIEW 18 YEARS LATER.- Mitya Karabash and a Tiling Conjecture.- Norton Starr’s 3-Dimensional Tromino Tiling.- Large Progress in Small Ramsey Numbers.- The Borsuk Problem Conquered.- Etude on the Chromatic Number of the Plane.
Recenzii
From the book reviews:
“This book itself has also a good chance to occupy a permanent place in the mathematical literature. Among its virtues is the lively and fluent style, in which it introduces and explains the problems. … In summing up, we warmly recommend this book to any interested reader: take and read, and dip into the exercises and the problems … .” (Gábor Gévay, Acta Scientiarum Mathematicarum (Szeged), Vol. 77 (3-4), 2011)
Characteristically, each of the topics included in the book require very little in the way of preparation and evolve fast into open questions and research level conjectures...This is a delightful book that will be welcomed enthusiastically by students and organizers of mathematical circles and mathematics fans.---Alexander Bogomolny
Boltyanski and Soifer have titled their monograph aptly, inviting talented students to develop their technique and understanding by grappling with a challenging array of elegant combinatorial problems having a distinct geometric tone. The etudes presented here are not simply thoese of Czerny, but are better compared to the etudes of Chopin, not only technically demanding and addressed to a variety of specific skills, but at the same time possessing an exceptional beauty that characterizes the best of art...Keep this book at hand as you plan your next problem solving seminar. ---The American Mathematical Monthly
“This book itself has also a good chance to occupy a permanent place in the mathematical literature. Among its virtues is the lively and fluent style, in which it introduces and explains the problems. … In summing up, we warmly recommend this book to any interested reader: take and read, and dip into the exercises and the problems … .” (Gábor Gévay, Acta Scientiarum Mathematicarum (Szeged), Vol. 77 (3-4), 2011)
Characteristically, each of the topics included in the book require very little in the way of preparation and evolve fast into open questions and research level conjectures...This is a delightful book that will be welcomed enthusiastically by students and organizers of mathematical circles and mathematics fans.---Alexander Bogomolny
Boltyanski and Soifer have titled their monograph aptly, inviting talented students to develop their technique and understanding by grappling with a challenging array of elegant combinatorial problems having a distinct geometric tone. The etudes presented here are not simply thoese of Czerny, but are better compared to the etudes of Chopin, not only technically demanding and addressed to a variety of specific skills, but at the same time possessing an exceptional beauty that characterizes the best of art...Keep this book at hand as you plan your next problem solving seminar. ---The American Mathematical Monthly
Textul de pe ultima copertă
The etudes presented here are not simply those of Czerny, but are better compared to the etudes of Chopin, not only technically demanding and addressed to a variety of specific skills, but at the same time possessing an exceptional beauty that characterizes the best of art... Keep this book at hand as you plan your next problem solving seminar.
—Don Chakerian
THE AMERICAN MATHEMATICAL MONTHLY
Alexander Soifer’s Geometrical Etudes in Combinatorial Mathematics is concerned with beautiful mathematics, and it will likely occupy a special and permanent place in the mathematical literature, challenging and inspiring both novice and expert readers with surprising and exquisite problems and theorems… He conveys the joy of discovery as well as anyone, and he has chosen a topic that will stand the test of time.
—Cecil Rousseau
MEMPHIS STATE UNIVERSITY
Each time I looked at Geometrical Etudes in Combinatorial Mathematics I found something that was new and surprising to me, even after more than fifty years working in combinatorial geometry. The new edition has been expanded (and updated where needed), by several new delightful chapters. The careful and gradual introduction of topics and results is equally inviting for beginners and for jaded specialists. I hope that the appeal of the book will attract many young mathematicians to the visually attractive problems that keep you guessing how the questions will be answered in the end.
—Branko Grünbaum
UNIVERSITY OF WASHINGTON, SEATTLE
All of Alexander Soifer’s books can be viewed as excellent and artful entrees to mathematics in the MAPS mode... Different people will have different preferences among them, but here is something that Geometric Etudes does better than the others: after bringing the reader into a topic by posing interesting problems, starting from a completelyelementary level, it then goes deep. The depth achieved is most spectacular in Chapter 4, on Combinatorial Geometry, which could be used as part or all of a graduate course on the subject, but it is also pretty impressive in Chapter 3, on graph theory, and in Chapter 2, where the infinite pigeon hole principle (infinitely many pigeons, finitely many holes) is used to prove theorems in an important subset of the set of fundamental theorems of analysis.
—Peter D. Johnson, Jr.
AUBURN UNIVERSITY
This interesting and delightful book … is written both for mature mathematicians interested in somewhat unconventional geometric problems and especially for talented young students who are interested in working on unsolved problems which can be easily understood by beginners and whose solutions perhaps will not require a great deal of knowledge but may require a great deal of ingenuity ... I recommend this book very warmly.
—Paul Erdos
—Don Chakerian
THE AMERICAN MATHEMATICAL MONTHLY
Alexander Soifer’s Geometrical Etudes in Combinatorial Mathematics is concerned with beautiful mathematics, and it will likely occupy a special and permanent place in the mathematical literature, challenging and inspiring both novice and expert readers with surprising and exquisite problems and theorems… He conveys the joy of discovery as well as anyone, and he has chosen a topic that will stand the test of time.
—Cecil Rousseau
MEMPHIS STATE UNIVERSITY
Each time I looked at Geometrical Etudes in Combinatorial Mathematics I found something that was new and surprising to me, even after more than fifty years working in combinatorial geometry. The new edition has been expanded (and updated where needed), by several new delightful chapters. The careful and gradual introduction of topics and results is equally inviting for beginners and for jaded specialists. I hope that the appeal of the book will attract many young mathematicians to the visually attractive problems that keep you guessing how the questions will be answered in the end.
—Branko Grünbaum
UNIVERSITY OF WASHINGTON, SEATTLE
All of Alexander Soifer’s books can be viewed as excellent and artful entrees to mathematics in the MAPS mode... Different people will have different preferences among them, but here is something that Geometric Etudes does better than the others: after bringing the reader into a topic by posing interesting problems, starting from a completelyelementary level, it then goes deep. The depth achieved is most spectacular in Chapter 4, on Combinatorial Geometry, which could be used as part or all of a graduate course on the subject, but it is also pretty impressive in Chapter 3, on graph theory, and in Chapter 2, where the infinite pigeon hole principle (infinitely many pigeons, finitely many holes) is used to prove theorems in an important subset of the set of fundamental theorems of analysis.
—Peter D. Johnson, Jr.
AUBURN UNIVERSITY
This interesting and delightful book … is written both for mature mathematicians interested in somewhat unconventional geometric problems and especially for talented young students who are interested in working on unsolved problems which can be easily understood by beginners and whose solutions perhaps will not require a great deal of knowledge but may require a great deal of ingenuity ... I recommend this book very warmly.
—Paul Erdos
Caracteristici
Appeals to talented students from various levels Provides insights into combinatorial theory, geometry and graph theory Explores practical applications of combinatorial geometry Engages a general audience Includes supplementary material: sn.pub/extras