Cantitate/Preț
Produs

Geometric Integration Theory: Cornerstones

Autor Steven G. Krantz, Harold R. Parks
en Limba Engleză Hardback – 12 aug 2008
Geometric measure theory has roots going back to ancient Greek mathematics, for considerations of the isoperimetric problem (to ?nd the planar domain of given perimeter having greatest area) led naturally to questions about spatial regions and boundaries. In more modern times, the Plateau problem is considered to be the wellspring of questions in geometric measure theory. Named in honor of the nineteenth century Belgian physicist Joseph Plateau, who studied surface tension phenomena in general, andsoap?lmsandsoapbubblesinparticular,thequestion(initsoriginalformulation) was to show that a ?xed, simple, closed curve in three-space will bound a surface of the type of a disk and having minimal area. Further, one wishes to study uniqueness for this minimal surface, and also to determine its other properties. Jesse Douglas solved the original Plateau problem by considering the minimal surfacetobeaharmonicmapping(whichoneseesbystudyingtheDirichletintegral). For this work he was awarded the Fields Medal in 1936. Unfortunately, Douglas’s methods do not adapt well to higher dimensions, so it is desirable to ?nd other techniques with broader applicability. Enter the theory of currents. Currents are continuous linear functionals on spaces of differential forms.
Citește tot Restrânge

Din seria Cornerstones

Preț: 64740 lei

Preț vechi: 76165 lei
-15% Nou

Puncte Express: 971

Preț estimativ în valută:
12391 12770$ 10461£

Carte tipărită la comandă

Livrare economică 04-18 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780817646769
ISBN-10: 0817646760
Pagini: 339
Ilustrații: XVI, 340 p. 33 illus.
Dimensiuni: 155 x 235 x 23 mm
Greutate: 0.61 kg
Ediția:2008
Editura: Birkhäuser Boston
Colecția Birkhäuser
Seria Cornerstones

Locul publicării:Boston, MA, United States

Public țintă

Research

Cuprins

Basics.- Carathéodory’s Construction and Lower-Dimensional Measures.- Invariant Measures and the Construction of Haar Measure..- Covering Theorems and the Differentiation of Integrals.- Analytical Tools: The Area Formula, the Coarea Formula, and Poincaré Inequalities..- The Calculus of Differential Forms and Stokes’s Theorem.- to Currents.- Currents and the Calculus of Variations.- Regularity of Mass-Minimizing Currents.

Recenzii

From the reviews:
"This is a graduate textbook with the main purpose of introducing geometric measure theory through the notion of currents. … One of the most important features of this text is that it is self-contained … . The book also contains an Appendix … as well as extended list of references, making it a good text for a graduate course, as well as for an independent or self study." (Mihaela Poplicher, The Mathematical Association of America, March, 2009)
"The book under review succeeds in giving a complete and readable introduction to geometric measure theory. It can be used by students willing to learn this beautiful theory or by teachers as a basis for a one- or two-semester course." (Andreas Bernig, Mathematical Reviews, Issue 2009 m)
“The authors present main fields of applications, namely the isoperimetric problem and the regularity of minimal currents. The exposition is detailed and very well organized and therefore the book should be quite accessible for graduate students.” (R. Steinbauer, Monatshefte für Mathematik, Vol. 162 (3), March, 2011)

Textul de pe ultima copertă

This textbook introduces geometric measure theory through the notion of currents. Currents—continuous linear functionals on spaces of differential forms—are a natural language in which to formulate various types of extremal problems arising in geometry, and can be used to study generalized versions of the Plateau problem and related questions in geometric analysis.
Key features of Geometric Integration Theory:
* Includes topics on the deformation theorem, the area and coarea formulas, the compactness theorem, the slicing theorem and applications to minimal surfaces
* Applies techniques to complex geometry, partial differential equations, harmonic analysis, differential geometry, and many other parts of mathematics
* Provides considerable background material for the student
Motivating key ideas with examples and figures, Geometric Integration Theory is a comprehensive introduction ideal for use in the classroom and for self-study. The exposition demands minimal background, is self-contained and accessible, and thus is ideal for graduate students and researchers.

Caracteristici

Self-contained, inclusive, and accessible for both the graduate students and researchers Motivates the key ideas with examples and figures Includes considerable background material and complete proofs