Cantitate/Preț
Produs

Geometric Measure Theory and Real Analysis: Publications of the Scuola Normale Superiore, cartea 17

Editat de Luigi Ambrosio
en Limba Engleză Paperback – 13 ian 2015
In 2013, a school on Geometric Measure Theory and Real Analysis, organized by G. Alberti, C. De Lellis and myself, took place at the Centro De Giorgi in Pisa, with lectures by V. Bogachev, R. Monti, E. Spadaro and D. Vittone.
The book collects the notes of the courses. The courses provide a deep and up to date insight on challenging mathematical problems and their recent developments: infinite-dimensional analysis, minimal surfaces and isoperimetric problems in the Heisenberg group, regularity of sub-Riemannian geodesics and the regularity theory of minimal currents in any dimension and codimension.
Citește tot Restrânge

Din seria Publications of the Scuola Normale Superiore

Preț: 26864 lei

Nou

Puncte Express: 403

Preț estimativ în valută:
5142 5348$ 4309£

Carte tipărită la comandă

Livrare economică 10-15 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9788876425226
ISBN-10: 8876425225
Pagini: 250
Ilustrații: VIII, 228 p.
Dimensiuni: 155 x 235 x 22 mm
Greutate: 0.49 kg
Ediția:2014
Editura: Scuola Normale Superiore
Colecția Edizioni della Normale
Seriile Publications of the Scuola Normale Superiore, CRM Series

Locul publicării:Pisa, Switzerland

Public țintă

Research

Cuprins

Vladimir I. Bogachev: Sobolev classes on infinite-dimensional spaces.- Roberto Monti: Isoperimetric problem and minimal surfaces in the Heisenberg group.- Emanuele Spadaro: Regularity of higher codimension area minimizing integral currents.- Davide Vittone: The regularity problem for sub-Riemannian geodesics.

Textul de pe ultima copertă

In 2013, a school on Geometric Measure Theory and Real Analysis, organized by G. Alberti, C. De Lellis and myself, took place at the Centro De Giorgi in Pisa, with lectures by V. Bogachev, R. Monti, E. Spadaro and D. Vittone.
The book collects the notes of the courses. The courses provide a deep and up to date insight on challenging mathematical problems and their recent developments: infinite-dimensional analysis, minimal surfaces and isoperimetric problems in the Heisenberg group, regularity of sub-Riemannian geodesics and the regularity theory of minimal currents in any dimension and codimension.

Caracteristici

Covers very recent developments, partially unpublished at the time of the school Covers the most exciting developments in this research area