Geometries and Transformations
Autor Norman W. Johnsonen Limba Engleză Hardback – 6 iun 2018
Preț: 509.94 lei
Preț vechi: 572.97 lei
-11% Nou
Puncte Express: 765
Preț estimativ în valută:
97.60€ • 102.96$ • 81.33£
97.60€ • 102.96$ • 81.33£
Carte disponibilă
Livrare economică 13-27 decembrie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781107103405
ISBN-10: 1107103401
Pagini: 452
Dimensiuni: 162 x 241 x 27 mm
Greutate: 0.77 kg
Editura: Cambridge University Press
Colecția Cambridge University Press
Locul publicării:New York, United States
ISBN-10: 1107103401
Pagini: 452
Dimensiuni: 162 x 241 x 27 mm
Greutate: 0.77 kg
Editura: Cambridge University Press
Colecția Cambridge University Press
Locul publicării:New York, United States
Cuprins
Introduction; 1. Homogenous spaces; 2. Linear geometries; 3. Circular geometries; 4. Real collineation groups; 5. Equiareal collineations; 6. Real isometry groups; 7. Complex spaces; 8. Complex collineation groups; 9. Circularities and concatenations; 10. Unitary isometry groups; 11. Finite symmetry groups; 12. Euclidean symmetry groups; 13. Hyperbolic coxeter groups; 14. Modular transformations; 15. Quaternionic modular groups.
Recenzii
'This extremely valuable book tells the story about classical geometries - euclidean, spherical, hyperbolic, elliptic, unitary, affine, projective - and how they all fit together. At the center are geometric transformation groups, both continuous groups such as isometry or collineation groups, and their discrete subgroups occurring as symmetry groups of polytopes, tessellations, or patterns, including reflection groups. I highly recommend the book!' Egon Schulte, Northeastern University, Massachusetts
'This is a book written with a passion for geometry, for complete lists, for consistent notation, for telling the history of a concept, and a passion to give an insight into a situation before going into the details.' Erich W. Ellers, zbMATH
'This is a book written with a passion for geometry, for complete lists, for consistent notation, for telling the history of a concept, and a passion to give an insight into a situation before going into the details.' Erich W. Ellers, zbMATH
Notă biografică
Descriere
A readable exposition of how Euclidean and other geometries can be distinguished using linear algebra and transformation groups.