Cantitate/Preț
Produs

Gibbs Measures and Phase Transitions: de Gruyter Studies in Mathematics, cartea 9

Autor Hans-Otto Georgii
en Limba Engleză Hardback – 16 mai 2011
From a review of the first edition: "This book […] covers in depth a broad range of topics in the mathematical theory of phase transition in statistical mechanics. […] It is in fact one of the author's stated aims that this comprehensive monograph should serve both as an introductory text and as a reference for the expert." (F. Papangelou, Zentralblatt MATH)
The second edition has been extended by a new section on large deviations and some comments on the more recent developments in the area.
Citește tot Restrânge

Din seria de Gruyter Studies in Mathematics

Preț: 162157 lei

Preț vechi: 210593 lei
-23% Nou

Puncte Express: 2432

Preț estimativ în valută:
31034 32236$ 25778£

Carte tipărită la comandă

Livrare economică 03-17 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783110250299
ISBN-10: 3110250292
Pagini: 559
Ilustrații: black & white tables
Dimensiuni: 170 x 240 x 34 mm
Greutate: 0.98 kg
Ediția:2nd ext. ed.
Editura: De Gruyter
Colecția De Gruyter
Seria de Gruyter Studies in Mathematics

Locul publicării:Berlin/Boston

Notă biografică

AD>Hans-Otto Georgii, Ludwig-Maximilians-Universität Munich, Germany.

Cuprins

Frontmatter -- Preface -- Contents -- Introduction -- Part I. General theory and basic examples -- Chapter 1 Specifications of random fields -- Chapter 2 Gibbsian specifications -- Chapter 3 Finite state Markov chains as Gibbs measures -- Chapter 4 The existence problem -- Chapter 5 Specifications with symmetries -- Chapter 6 Three examples of symmetry breaking -- Chapter 7 Extreme Gibbs measures -- Chapter 8 Uniqueness -- Chapter 9 Absence of symmetry breaking. Non-existence -- Part II. Markov chains and Gauss fields as Gibbs measures -- Chapter 10 Markov fields on the integers I -- Chapter 11 Markov fields on the integers II -- Chapter 12 Markov fields on trees -- Chapter 13 Gaussian fields -- Part III. Shift-invariant Gibbs measures -- Chapter 14 Ergodicity -- Chapter 15 The specific free energy and its minimization -- Chapter 16 Convex geometry and the phase diagram -- Part IV. Phase transitions in reflection positive models -- Chapter 17 Reflection positivity -- Chapter 18 Low energy oceans and discrete symmetry breaking -- Chapter 19 Phase transitions without symmetry breaking -- Chapter 20 Continuous symmetry breaking in N-vector models -- Bibliographical Notes -- Further Progress -- References -- References to the Second Edition -- List of Symbols -- Index