Graphs as Structural Models: The Application of Graphs and Multigraphs in Cluster Analysis: Advances in System Analysis
Autor Erhard Godehardten Limba Engleză Paperback – 1988
Preț: 371.51 lei
Nou
Puncte Express: 557
Preț estimativ în valută:
71.10€ • 75.19$ • 59.31£
71.10€ • 75.19$ • 59.31£
Carte tipărită la comandă
Livrare economică 30 decembrie 24 - 13 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783528063122
ISBN-10: 3528063122
Pagini: 228
Ilustrații: X, 214 p.
Greutate: 0.37 kg
Ediția:1988
Editura: Vieweg+Teubner Verlag
Colecția Vieweg+Teubner Verlag
Seria Advances in System Analysis
Locul publicării:Wiesbaden, Germany
ISBN-10: 3528063122
Pagini: 228
Ilustrații: X, 214 p.
Greutate: 0.37 kg
Ediția:1988
Editura: Vieweg+Teubner Verlag
Colecția Vieweg+Teubner Verlag
Seria Advances in System Analysis
Locul publicării:Wiesbaden, Germany
Public țintă
ResearchCuprins
0 Mathematical Symbols and Notation.- 1 Introduction, Basic Concepts.- 1.1 Modelling in Medicine and Biology.- 1.2 Graphs as Tools in Mathematical Modelling.- 1.3 The Scope of Exploratory Data Analysis.- 1.4 The Basic Concepts of Cluster Analysis.- 2 Current Methods of Cluster Analysis: An Overview.- 2.1 The Aim of Cluster Analysis.- 2.2 The Different Steps of a Cluster Analysis.- 2.3 A Short Review of Classification Methods.- 2.4 Preparation and Presentation of Results.- 3 Graph-theoretic Methods of Cluster Analysis.- 3.1 Classification by Graphs.- 3.2 Classifications by Multigraphs.- 3.3 An Algorithm for the Construction of (% MathType!MTEF!2!1!+-% feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8% qacaWGRbGaaiilaiqadsgagaWca8aadaahaaWcbeqaa8qacaWGubaa% aOGaai4oaiaadohaaaa!3B95!$$k,{\vec d^T};s$$)-Clusters.- 3.4 The Construction of Dendrograms of (k; s)-Clusters.- 4 Probability Models of Classification.- 4.1. Current Probability Models in Cluster Analysis.- 4.2. Graph-Theoretic Models of Classification.- 4.3. Discussion of the Graph-Theoretic Probability Models.- 5 Probability Theory of Completely Labelled Random Multigraphs.- 5.1 Definitions and Notation.- 5.2 A Probability Model of Random Multigraphs.- 5.3 Some Results for Random Graphs ?nN and Gnp.- 5.4 Limit Theorems for Random Multigraphs.- 5.5 Discussion of the Results.- 5.6 Hints for the Numerical Computation of the Expectations and Distributions.- 6 Classifications by Multigraphs: Three Examples from Medicine.- 6.1 Pharmacokinetics of Urapidil in Patients with Normal andImpaired Renal Function.- 6.2 Pharmacokinetics of Lidocaine in Patients with Kidney or Liver Impairments.- 6.3 Pregnancy-Induced Hypertension.