Green Energy Materials Handbook
Editat de Ming-Fa Lin, Wen-Dung Hsuen Limba Engleză Hardback – 3 iul 2019
This work presents complete experimental measurements and computational results as well as potential applications. Among green technologies, electrochemical and energy storage technologies are considered as the most practicable, environmentally friendly, and workable to make full use of renewable energy sources. This text includes 11 chapters on the field, devoted to 4 important topical areas: computational material design, energy conversion, ion transport, and electrode materials.
This handbook is aimed at engineers, researchers, and those who work in the fields of materials science, chemistry, and physics. The systematic studies proposed in this book can greatly promote the basic and applied sciences.
Preț: 1291.95 lei
Preț vechi: 1575.56 lei
-18% Nou
Puncte Express: 1938
Preț estimativ în valută:
247.33€ • 257.09$ • 205.06£
247.33€ • 257.09$ • 205.06£
Carte tipărită la comandă
Livrare economică 06-20 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781138605916
ISBN-10: 1138605913
Pagini: 382
Ilustrații: 27 Tables, black and white; 142 Illustrations, color; 36 Illustrations, black and white
Dimensiuni: 156 x 234 x 23 mm
Greutate: 1.78 kg
Ediția:1
Editura: CRC Press
Colecția CRC Press
ISBN-10: 1138605913
Pagini: 382
Ilustrații: 27 Tables, black and white; 142 Illustrations, color; 36 Illustrations, black and white
Dimensiuni: 156 x 234 x 23 mm
Greutate: 1.78 kg
Ediția:1
Editura: CRC Press
Colecția CRC Press
Cuprins
- Introduction
- Molecular effects of functional polymer binders on Li+ transport on the cathode surface within lithium ion battery
2.1 Introduction
2.2 Molecular dynamics simulation details
2.3 Results and discussion
2.4 Summary and future perspectives - Essential properties of Li/Li+ graphite intercalation compounds
3.1 Introduction
3.2 The theoretical model
3.3 Rich geometric structures of graphites and graphite intercalation compounds
3.4 Unusual band structures of graphite-related systems
3.5 van Hove singularities in density of states
3.6 Chemical bondings and charge distributions
3.7 Summary - Defective and amorphous graphene as anode materials for Li-ion batteries: a first-principles study
4.1 Introduction
4.2 Computational methods
4.3 Results and discussions
4.4 Conclusion - Rich Essential Properties of Si-Doped Graphene
5.1 Introduction
5.2 Computational methods
5.3 Geometric structures of Si-adsorbed and Si-substituted graphene
5.4 Rich electronic structures
5.5 Spatial charge densities
5.6 The diverse density of states
5.7 Summary - Diversified essential properties in transition metals adsorbed Graphene
6.1 Introduction
6.2 The theoretical model
6.3 Results and discussions
6.4 Summary - Combining neural network with first-principles calculations for computational screening of electrolyte additives in lithium ion batteries
7.1 Introduction
7.2 Materials and methods
7.3 Results and disscussions
7.4 Conclusion - Metal oxide-reduced graphene oxide (MO-RGO) nanocomposite as high performance anode materials in Lithium ion batteries
8.1 Introduction
8.2 Potential binary metal oxides asanode materials in LIBs
8.3 Complex metal oxides as anode materials in LIBs
8.4 Metal oxide-graphene/reduced graphene oxide nanocomposite as anode materials in LIBs
8.5 Our research contribution toward LIB
8.6 Conclusions - In-situ X-ray and Neutron Analysis Techniques on Lithium/Sodium ion batteries
9.1 Introduction
9.2 Methodology for in-situ X-ray and neutron scattering experiments
9.3 In-situ X-ray analysis on synergistic effects of Si anode materials
9.4 In-operando X-ray diffraction - a quantitative analysis on Si-graphite negative electrode
9.5 In-situ X-ray diffraction analysis of lithiation-induced crystal restructuring of Sn/TiO2 nanocrystallites
9.6 In-operando neutron diffraction analysis on low temperature lithium diffusion behaviors in 18650 Li-ion battery
9.7 In-operando neutron diffraction Studies on P2-Na2/3Fe1/3Mn2/3O2 cathode in a sodium ion battery
9.8 Summary - Micro-Phase Separated poly(VdF-co-HFP)/Ionic Liquid/Carbonate as Gel Polymer Electrolytes for Lithium-Ion Batteries
10.1 Introduction
10.2 Experimental
10.3 Results and discussion
10.4 Conclusion - Gel and solid electrolytes for Lithium ion batteries
11.1 Introduction
11.2 Solid-state electrolytes (SSEs)
11.3 Gel Polymer Electrolytes (GPEs)
11.4 Summary - Silicon-Nanowire Based Hybrid Solar Cells
12.1 Introduction
12.2 Silicon nanowires fabrication
12.3 PEDOT: PSS polymer as the p-type layer of hybrid solar cell application
12.4 Silicon Nanowire based Hybrid Solar Cells
12.5 Conclusion - Characterization and Performance of Li-ZnO Nanofiber and Nanoforest Photoanodes for Dye-sensitized Solar Cell
13.1 Introduction
13.2 Experimental
13.3 Results and discussion
13.4 Conclusion - Review of monolithic dye-sensitized solar cells and perovskite solar cells
14.2 Monolithic dye-sensitized solar cells
- Mesoporous electrode for monolithic perovskite solar cells
- Conclusion
16. Concluding Remarks
17. Perspective on Battery Research
Index
Notă biografică
Ming-Fa Lin is a distinguished professor in the Department of Physics, National Cheng Kung University, Taiwan. He received his PhD in physics in 1993 from the National Tsing-Hua University, Taiwan. His main scientific interests focus on essential properties of carbon-related materials and low-dimensional systems. He is a member of American Physical Society, American Chemical Society, and Physical Society of Republic of China (Taiwan).
Wen-Dung Su is Associate Professor, Department of Materials Science, National Cheng Kung University, Taiwan. Dr. Su received a PhD from University of Florida and was awarded Outstanding Teaching Award, Institute of Engineering Education, Taiwan.
Wen-Dung Su is Associate Professor, Department of Materials Science, National Cheng Kung University, Taiwan. Dr. Su received a PhD from University of Florida and was awarded Outstanding Teaching Award, Institute of Engineering Education, Taiwan.
Descriere
This book provides a systematic review of the development of reliable, low-cost, and high-performance green energy materials, covering both up-to-date mainstream computational and experimental studies. It presents reliable and complete experimental measurements and computational results as well as potential applications.