Handbook of Complex Analysis: Geometric Function Theory
Editat de Reiner Kuhnauen Limba Engleză Hardback – 8 dec 2004
· A collection of independent survey articles in the field of GeometricFunction Theory · Existence theorems and qualitative properties of conformal and quasiconformal mappings · A bibliography, including many hints to applications in electrostatics, heat conduction, potential flows (in the plane).
Preț: 1492.50 lei
Preț vechi: 2044.52 lei
-27% Nou
Puncte Express: 2239
Preț estimativ în valută:
285.66€ • 297.73$ • 237.80£
285.66€ • 297.73$ • 237.80£
Carte tipărită la comandă
Livrare economică 06-20 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780444515476
ISBN-10: 044451547X
Pagini: 876
Dimensiuni: 24 x 165 x 38 mm
Greutate: 1.67 kg
Editura: ELSEVIER SCIENCE
ISBN-10: 044451547X
Pagini: 876
Dimensiuni: 24 x 165 x 38 mm
Greutate: 1.67 kg
Editura: ELSEVIER SCIENCE
Public țintă
Institutes of mathematics (and computer sciences). Institutes of physics and engineering.Cuprins
Preface (R. Kühnau).
Quasiconformal mappings in euclidean space (F.W. Gehring).
Variational principles in the theory of quasiconformal maps (S.L. Krushkal).
The conformal module of quadrilaterals and of rings (R. Kühnau).
Canonical conformal and quasiconformal mappings. Identities. Kernel functions (R. Kühnau).
Univalent holomorphic functions with quasiconform extensions (variational approach) (S.L. Krushkal).
Transfinite diameter, Chebyshev constant and capacity (S. Kirsch).
Some special classes of conformal mappings (T.J. Suffridge).
Univalence and zeros of complex polynomials (G. Schmieder).
Methods for numerical conformal mapping (R. Wegmann).
Univalent harmonic mappings in the plane (D. Bshouty, W. Hengartner).
Quasiconformal extensions and reflections (S.L. Krushkal).
Beltrami equation (U. Srebro, E. Yakubov).
The applications of conformal maps in electrostatics (R. Kühnau).
Special functions in Geometric Function Theory (S.-L. Qin, M. Vuorinen).
Extremal functions in Geometric Function Theory. Special functions. Inequalities (R. Kühnau).
Eigenvalue problems and conformal mapping (B. Dittmar).
Foundations of quasiconformal mappings (C.A. Cazacu).
Quasiconformal mappings in value-distribution theory (D. Drasin. A.A. Gol’dberg, P. Poggi-Corradini).
Quasiconformal mappings in euclidean space (F.W. Gehring).
Variational principles in the theory of quasiconformal maps (S.L. Krushkal).
The conformal module of quadrilaterals and of rings (R. Kühnau).
Canonical conformal and quasiconformal mappings. Identities. Kernel functions (R. Kühnau).
Univalent holomorphic functions with quasiconform extensions (variational approach) (S.L. Krushkal).
Transfinite diameter, Chebyshev constant and capacity (S. Kirsch).
Some special classes of conformal mappings (T.J. Suffridge).
Univalence and zeros of complex polynomials (G. Schmieder).
Methods for numerical conformal mapping (R. Wegmann).
Univalent harmonic mappings in the plane (D. Bshouty, W. Hengartner).
Quasiconformal extensions and reflections (S.L. Krushkal).
Beltrami equation (U. Srebro, E. Yakubov).
The applications of conformal maps in electrostatics (R. Kühnau).
Special functions in Geometric Function Theory (S.-L. Qin, M. Vuorinen).
Extremal functions in Geometric Function Theory. Special functions. Inequalities (R. Kühnau).
Eigenvalue problems and conformal mapping (B. Dittmar).
Foundations of quasiconformal mappings (C.A. Cazacu).
Quasiconformal mappings in value-distribution theory (D. Drasin. A.A. Gol’dberg, P. Poggi-Corradini).