Cantitate/Preț
Produs

Handbook of Single-Cell Technologies: Handbook of Single-Cell Technologies

Editat de Tuhin Subhra Santra, Fan-Gang Tseng
en Limba Engleză Hardback – 29 oct 2021
This book provides a brief overview of single-cell analysis using recent advanced technologies.
The different sections cover different aspect of single cell analysis and applications with their advantages, limitations, and future challenges. The book has covered how different physical energies such as optical, electrical, and mechanical energy have been applied for single cell therapy and analysis. The recent advanced micro/nanofluidic devices have been employed for single-cell counting, manipulation, cultivation, separation, isolation, lysis, printing and patterning and host-viral interaction at single-cell level. Various chemical approaches for single-cell analysis have been discussed, such as liposome mediated materials transfer at single-cell and their analysis, discovery of antibody via single-cell, high-throughput screening of antigen-specific antibody-secreting cells, and biomolecular secretion analysis of individual cells. Moreover, different single-cell omics such asgenomics, proteomics and transcriptomics have been discussed using microfluidic technologies as well as conventional approaches. The role of single cell analysis in system biology and biocatalysis have been discussed in detail. The book describes single-cell phenotyping of heterogeneous tissue, stimulation, and instant reaction quenching technology for biochemical kinetic analysis, large scale single-cell assay for the identification of biocatalysts and analytical techniques for single-cell studies in microbiology. The role of single-cell analysis in cancer, such as single-cell adhesion and cancer progression, single-cell technologies for cancer therapy, analytical technology for single cancer cell analysis, and biophysical markers for cancer cell analysis have been discussed. The flow cytometry based high throughput single-cell analysis have been well emphasized. Finally this book has covered single-cell electrophysiology, single-cell sensing and size measurement using mechanical and microwave resonators, molecular force spectroscopy for cell adhesion measurement, micro-tweezers and force microscopy techniques for single-cell mechanobiological analysis, mass spectrometry and acoustic tweezers  for single-cell manipulation and analysis. 
This book is intended for academic and industrial researchers, undergraduate and graduate students in the fields of biomedical engineering, bio-micro/nanoengineering, and bio-micro/nano fabrication for single-cell analysis. It can be used for courses on bio-MEMS/bio-NEMS, biomicrofluidics, bio-micro/nanofabrications, micro/nanofluidics, biophysics, single cell analysis, bionanotechnology, drug delivery systems and biomedical microdevices. Collective contributions from respected experts, have brought diverse aspects of single-cell technologies in a single hand book. This will benefit researchers and practitioners in the biotechnology industry for different diseases analysis, therapeutics, diagnostics, drug discovery, drug screening etc. In addition to hard copies, the book will be available online and will often be updated by the authors.
Citește tot Restrânge

Preț: 418268 lei

Preț vechi: 440282 lei
-5% Nou

Puncte Express: 6274

Preț estimativ în valută:
80056 83262$ 67087£

Carte disponibilă

Livrare economică 20 februarie-06 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9789811089527
ISBN-10: 9811089523
Pagini: 1096
Ilustrații: XXIII, 1096 p. 296 illus., 274 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 2.22 kg
Ediția:2022
Editura: Springer Nature Singapore
Colecția Springer
Seria Handbook of Single-Cell Technologies

Locul publicării:Singapore, Singapore

Cuprins

​Physical methods for single-cell technology.- Fluidic System and Integration.- Chemical methods for single-cell technology.- Single-cell analysis in system biology and omics.- Single-cell analysis for biocatalysis.- Single-cell technology in cancer.- Flow cytometry based single cell analysis.- Spectrum analysis method, targets, imaging and applications.

Notă biografică

Tuhin Subhra Santra is Assistant Professor in the Department of Engineering Design at the Indian Institute of Technology Madras, India, from July 2016. He was a tenure track “Honorary Visiting Professor” at National Tsing Hua University” Taiwan from 2108 to
2020, and he was a “Visiting Professor” at the University of Cambridge, UK, in 2019. Dr. Santra received his Ph.D. degree in Bio-Nano Electro Mechanical Systems  (Bio-NEMS) from National Tsing Hua University (NTHU), Taiwan, in 2013. Dr. Santra was a Postdoctoral
Researcher at the California NanoSystems Institute (CNSI), Universityof California, Los Angeles (UCLA), USA, from 2015 to 2016. His main research areas are Bio-NEMS, MEMS, single cell technology,single molecule detection, biomedical micro-/nano devices, nanomedicine, etc. Currently, Dr. Santra is serving as a Guest Editor for Cells, Micromachines, MDPI Journals and Frontiers of Bioengineering and
Biotechnology. He served as a Guest Editor for Cells, MDPI, in 2020; International Journal of Molecular Sciences (IJMS) in 2018, 2017, and 2015; Sensors in 2016; Molecules in 2016; and Micromachines in 2020 and 2013, among others. He was conference chair and
committee member of IEEE-NEMS in 2017, 2020 and 2021.
Dr. Santra has received many honors and awards such as “DBT/Wellcome Trust India Alliance Fellowship” in 2018, Honorary Research Fellow from National Tsing Hua University, Taiwan, in 2018, Bharat Bikas Award in 2017, IEEE-NEMS best conference paper award in 2014, a silver medal from Vidyasagar University in 2004, etc. He is Editor of the book entitled Nanomaterials and Their Biomedical Applications by
Springer Nature, Singapore, in 2021; Microfluidics and  Bio-NEMS: Devices and Applications by Jenny Stanford Publisher, Singapore, in 2020; and Essential of Single Cell Analysis Springer, Germany, in 2016, among others. He published more than 6 books, 35 SCI journals, 20 book chapters, 15 US/Taiwan/Indian patents, and 20 international conference proceedings in his research field.



Dr. Fan-Gang (kevin) Tseng received his Ph.D. degree in Mechanical Engineering from UCLA, USA, in 1998. He joined Engineering and System Department of National Tsing Hua University in 1999 and advanced to Professor in 2006. He was the Chairman of ESS Department in NTHU (2010–2013), Associate Vice President for Global Affair in NTHU (2013), a Visiting Scholar of Koch Institute of Integrated Cancer Research
in MIT USA (2014–2015), and the Dean of Nuclear Science College in NTHU (2016–2017). He is currently a distinguished professor of ESS Department as well as NEMS I., and the Vice President for R&D at NTHU (2017–present), as well as a Research Fellow with Academia
Sinica Taiwan (2006–present). He was elected an ASME fellow in 2014. His research interests are in the fields of BioNEMS, biosensors, micro-fluidics, tissue chips, and fuel cells. He received 60 patents, wrote 8 book chapters, and published more than 260 SCI journal papers and 400 conference technical papers.He has received several awards, including Shakelton Scholar, twice National Innovation Award, twice Outstanding in Research Award, and Mr. Wu, Da-Yo Memorial Award from MOST, Taiwan, and more than20 best papers and other awards in various international conferences and competitions. He is among the editorial board of several journals including IJMS, Cells,
Micromachines, and Applied Science, and also the general co-chair for MicroTas 2018 and a board member of CBMS from 2018 to 2022.

Textul de pe ultima copertă

This book provides a brief overview of single-cell analysis using recent advanced technologies.
The different sections cover different aspect of single cell analysis and applications with their advantages, limitations, and future challenges. The book has covered how different physical energies such as optical, electrical, and mechanical energy have been applied for single cell therapy and analysis. The recent advanced micro/nanofluidic devices have been employed for single-cell counting, manipulation, cultivation, separation, isolation, lysis, printing and patterning and host-viral interaction at single-cell level. Various chemical approaches for single-cell analysis have been discussed, such as liposome mediated materials transfer at single-cell and their analysis, discovery of antibody via single-cell, high-throughput screening of antigen-specific antibody-secreting cells, and biomolecular secretion analysis of individual cells. Moreover, different single-cell omics such as genomics, proteomics and transcriptomics have been discussed using microfluidic technologies as well as conventional approaches. The role of single cell analysis in system biology and biocatalysis have been discussed in detail.  The book describes single-cell phenotyping of heterogeneous tissue, stimulation, and instant reaction quenching technology for biochemical kinetic analysis, large scale single-cell assay for the identification of biocatalysts and analytical techniques for single-cell studies in microbiology. The role of single-cell analysis in cancer, such as single-cell adhesion and cancer progression, single-cell technologies for cancer therapy, analytical technology for single cancer cell analysis, and biophysical markers for cancer cell analysis have been discussed. The flow cytometry based high throughput single-cell analysis have been well emphasized. Finally this book has covered single-cell electrophysiology, single-cell sensing and size measurement using mechanical and microwave resonators, molecular force spectroscopy for cell adhesion measurement, micro-tweezers and force microscopy techniques for single-cell mechanobiological analysis, mass spectrometry and acoustic tweezers  for single-cell manipulation and analysis. 
This book is intended for academic and industrial researchers, undergraduate and graduate students in the fields of biomedical engineering, bio-micro/nanoengineering, and bio-micro/nano fabrication for single-cell analysis. It can be used for courses on bio-MEMS/bio-NEMS, biomicrofluidics, bio-micro/nanofabrications, micro/nanofluidics, biophysics, single cell analysis, bionanotechnology, drug delivery systems and biomedical microdevices. Collective contributions from respected experts, have brought diverse aspects of single-cell technologies in a single hand book. This will benefit researchers and practitioners in the biotechnology industry for different diseases analysis, therapeutics, diagnostics, drug discovery, drug screening etc. In addition to hard copies, the book will be available online and will often be updated by the authors.

Caracteristici

Offers a comprehensive overview of single-cell technology Features contributions from respected experts in the fields Serves as an essential resource for students, academics and professionals in biotechnology