Hardware Accelerator Systems for Artificial Intelligence and Machine Learning: Advances in Computers, cartea 122
Shiho Kim, Ganesh Chandra Dekaen Limba Engleză Hardback – 6 apr 2021
- Updates on new information on the architecture of GPU, NPU and DNN
- Discusses In-memory computing, Machine intelligence and Quantum computing
- Includes sections on Hardware Accelerator Systems to improve processing efficiency and performance
Din seria Advances in Computers
- 32% Preț: 785.63 lei
- 41% Preț: 681.93 lei
- 20% Preț: 730.34 lei
- 41% Preț: 682.20 lei
- 27% Preț: 786.47 lei
- 32% Preț: 730.36 lei
- 32% Preț: 830.55 lei
- 41% Preț: 734.03 lei
- 37% Preț: 728.40 lei
- 28% Preț: 731.29 lei
- 37% Preț: 689.24 lei
- 28% Preț: 727.76 lei
- 28% Preț: 739.13 lei
- 37% Preț: 687.81 lei
- 37% Preț: 686.51 lei
- 28% Preț: 730.60 lei
- 28% Preț: 739.85 lei
- 37% Preț: 684.37 lei
- 37% Preț: 686.56 lei
- 28% Preț: 741.38 lei
- 20% Preț: 476.40 lei
- 20% Preț: 1241.34 lei
- 20% Preț: 1238.75 lei
- 20% Preț: 1238.42 lei
- 20% Preț: 1236.31 lei
- 20% Preț: 1300.70 lei
- 20% Preț: 1295.07 lei
- 20% Preț: 1295.71 lei
Preț: 735.60 lei
Preț vechi: 1021.74 lei
-28% Nou
Puncte Express: 1103
Preț estimativ în valută:
140.79€ • 147.71$ • 116.79£
140.79€ • 147.71$ • 116.79£
Carte tipărită la comandă
Livrare economică 22 ianuarie-05 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780128231234
ISBN-10: 0128231238
Pagini: 416
Dimensiuni: 152 x 229 mm
Greutate: 0.72 kg
Editura: ELSEVIER SCIENCE
Seria Advances in Computers
ISBN-10: 0128231238
Pagini: 416
Dimensiuni: 152 x 229 mm
Greutate: 0.72 kg
Editura: ELSEVIER SCIENCE
Seria Advances in Computers
Public țintă
Reference Book for Final year Undergraduate student for Project on Embedded system, Master’s and PhD ScholarsCuprins
1. Hardware accelerator systems for artificial intelligence and machine learning Shiho Kim 2. Introduction to Hardware Accelerator Systems for Artificial Intelligence and Machine Learning Neha Gupta 3. Deep Learning with GPUs Won Woo Ro 4. Edge Computing Optimization of Deep Learning Models for Specialized Tensor Processing Architectures-Yuri Gordienko Yuri Gordienko 5. Architecture of NPU for DNN Kyuho Lee 6. Hardware Architecture for Convolutional Neural Network for Image Processing Vardhana M 7. FPGA based Neural Network Accelerators Joo-Young Kim 8. Energy-Efficient Deep Learning Inference on Edge Devices Massimo Poncino 9. Hardware accelerator systems for Embedded systems William Jinho Song 10. Generic Quantum Hardware Accelerators for Conventional systems Parth Bir 11. Music recommender system using Restricted Boltzmann Machine with Implicit Feedback Malaya Dutta Borah 12. Embedded system for Automated Monitoring in Agriculture and Healthcare Prashanta Kumar Das