Hayabusa2 Asteroid Sample Return Mission: Technological Innovation and Advances
Autor Masatoshi Hirabayashi, Yuichi Tsudaen Limba Engleză Paperback – 19 apr 2022
- 2023 PROSE Awards - Winner: Finalist: Chemistry, Physics, Astronomy, and Cosmology: Association of American Publishers
- Broadly and comprehensively covers technologies necessary for space exploration missions
- Provides a unique focus on small body exploration missions
- Covers landing and impact experiments during the proximity operations of Hayabusa2
Preț: 726.46 lei
Preț vechi: 798.32 lei
-9% Nou
Puncte Express: 1090
Preț estimativ în valută:
139.04€ • 144.61$ • 116.52£
139.04€ • 144.61$ • 116.52£
Carte tipărită la comandă
Livrare economică 06-20 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780323997317
ISBN-10: 0323997317
Pagini: 610
Ilustrații: 200 illustrations (200 in full color)
Dimensiuni: 191 x 235 mm
Greutate: 1.02 kg
Editura: ELSEVIER SCIENCE
ISBN-10: 0323997317
Pagini: 610
Ilustrații: 200 illustrations (200 in full color)
Dimensiuni: 191 x 235 mm
Greutate: 1.02 kg
Editura: ELSEVIER SCIENCE
Public țintă
Space & Planetary Scientists; Aerospace EngineersCuprins
1. Introduction Tsuda, M. Yoshikawa, Hirabayashi, Kikuchi Summary of this book
2. Mission objectives Tsuda, M. Yoshikawa
3. Cruise and approach phases Tsuda, Saiki
4. Asteroid-proximity phase Tsuda, Saiki
5. Re-entry phase Tsuda, Saiki, Nakazawa Including the collection of the sample capsule
6. Operation planning and execution 6 Station-keeping (HPNAV) Takei, Keep the spacecraft at the home position.
7. Controlled descent (GCP-NAV) Ono, Ogawa Descent for special operations. Ground Control Point Navigation
8. Observation campaign Takei, Operations for Box-A, B, C, Mid-alt, DO, CRA1, 2.
9. TD (6DoF control) Terui Touchdown planning and results
10. TMT Ogawa Image processing
11. MASCOT Mimasu Separation of MASCOT, and interface between JAXA and DLR/CNES
12. MINERVA-II-1, 2 K. Yoshikawa, van Wal. MINERVA-II-1 separation operation and landing site operation
13. SCI Saiki, Mimasu
14. Solar conjunction phase Soldini
15. Fault management Takei,
16. Spacecraft dynamics, orbit determination, and trajectory design 16 Gravity/Radiometric science Ikeda, Takeuchi Gravity measurement
17. IES trajectory design Tsuda Low-thrust trajectory design and approach trajectory design
18. Orbit determination Takeuchi Orbit determination during Regular and Special Operation; Optical Navigation Phase, DDOR.
19. Contact dynamics K. Yoshikawa Spacecraft dynamics during the touchdown operation, especially during the contact.
20. MINERVA/TM orbit design Ooki, K. Yoshikawa, Ikeda Orbit design for MINERVA-II-2, and its dynamics
21. Quasi-periodic orbit Kikuchi Searching for orbits that the spacecraft can stay around the body.
Hardware systems developments
22. Sampler Sawada, K. Yoshikawa
23. IES Nishiyama, Hosoda, Tsukizaki Ion Engine System
24. Power system Shimada
25. Thermal design Nakazawa Thermal design and analysis; thermal analysis for the touchdown operation
26. AOCS AOCS
27. Communication subsystem Toda, Takei
28. RCS Mori
29. LIDAR, LRF Terui
30. CAM-H, DCAM Sawada
31. Sample-return capsule Yamada, Nakazawa Return capsule design
32. Ground station Fujii, Takeuchi Communication operation using the Usuda station and DSN.
33. HIL (operation training) Takei Operation training
34. Data archive (SPICE) Yamamoto Hayabusa2 mission and beyond
35. Outreach activity M. Yoshikawa
36. Industrial effort NEC
37. Extended mission Mimasu, Hirabayashi, at al Extended mission of the Hayabusa2 mission
2. Mission objectives Tsuda, M. Yoshikawa
3. Cruise and approach phases Tsuda, Saiki
4. Asteroid-proximity phase Tsuda, Saiki
5. Re-entry phase Tsuda, Saiki, Nakazawa Including the collection of the sample capsule
6. Operation planning and execution 6 Station-keeping (HPNAV) Takei, Keep the spacecraft at the home position.
7. Controlled descent (GCP-NAV) Ono, Ogawa Descent for special operations. Ground Control Point Navigation
8. Observation campaign Takei, Operations for Box-A, B, C, Mid-alt, DO, CRA1, 2.
9. TD (6DoF control) Terui Touchdown planning and results
10. TMT Ogawa Image processing
11. MASCOT Mimasu Separation of MASCOT, and interface between JAXA and DLR/CNES
12. MINERVA-II-1, 2 K. Yoshikawa, van Wal. MINERVA-II-1 separation operation and landing site operation
13. SCI Saiki, Mimasu
14. Solar conjunction phase Soldini
15. Fault management Takei,
16. Spacecraft dynamics, orbit determination, and trajectory design 16 Gravity/Radiometric science Ikeda, Takeuchi Gravity measurement
17. IES trajectory design Tsuda Low-thrust trajectory design and approach trajectory design
18. Orbit determination Takeuchi Orbit determination during Regular and Special Operation; Optical Navigation Phase, DDOR.
19. Contact dynamics K. Yoshikawa Spacecraft dynamics during the touchdown operation, especially during the contact.
20. MINERVA/TM orbit design Ooki, K. Yoshikawa, Ikeda Orbit design for MINERVA-II-2, and its dynamics
21. Quasi-periodic orbit Kikuchi Searching for orbits that the spacecraft can stay around the body.
Hardware systems developments
22. Sampler Sawada, K. Yoshikawa
23. IES Nishiyama, Hosoda, Tsukizaki Ion Engine System
24. Power system Shimada
25. Thermal design Nakazawa Thermal design and analysis; thermal analysis for the touchdown operation
26. AOCS AOCS
27. Communication subsystem Toda, Takei
28. RCS Mori
29. LIDAR, LRF Terui
30. CAM-H, DCAM Sawada
31. Sample-return capsule Yamada, Nakazawa Return capsule design
32. Ground station Fujii, Takeuchi Communication operation using the Usuda station and DSN.
33. HIL (operation training) Takei Operation training
34. Data archive (SPICE) Yamamoto Hayabusa2 mission and beyond
35. Outreach activity M. Yoshikawa
36. Industrial effort NEC
37. Extended mission Mimasu, Hirabayashi, at al Extended mission of the Hayabusa2 mission