Homological Mirror Symmetry and Tropical Geometry: Lecture Notes of the Unione Matematica Italiana, cartea 15
Editat de Ricardo Castano-Bernard, Fabrizio Catanese, Maxim Kontsevich, Tony Pantev, Yan Soibelman, Ilia Zharkoven Limba Engleză Paperback – 16 oct 2014
Din seria Lecture Notes of the Unione Matematica Italiana
- Preț: 281.43 lei
- Preț: 346.69 lei
- Preț: 410.35 lei
- Preț: 247.82 lei
- Preț: 339.65 lei
- Preț: 381.87 lei
- Preț: 356.08 lei
- Preț: 442.39 lei
- Preț: 340.07 lei
- 15% Preț: 515.58 lei
- Preț: 501.94 lei
- Preț: 382.41 lei
- Preț: 470.94 lei
- 15% Preț: 459.44 lei
- Preț: 408.18 lei
- Preț: 337.80 lei
- Preț: 346.89 lei
- Preț: 439.19 lei
- 15% Preț: 572.76 lei
- 15% Preț: 483.91 lei
- 15% Preț: 571.17 lei
- Preț: 343.02 lei
- Preț: 340.02 lei
- Preț: 382.79 lei
- 15% Preț: 637.04 lei
- Preț: 341.37 lei
- Preț: 337.56 lei
Preț: 690.11 lei
Preț vechi: 811.89 lei
-15% Nou
Puncte Express: 1035
Preț estimativ în valută:
132.12€ • 137.33$ • 109.54£
132.12€ • 137.33$ • 109.54£
Carte tipărită la comandă
Livrare economică 05-19 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783319065137
ISBN-10: 3319065130
Pagini: 436
Ilustrații: XI, 436 p. 43 illus., 18 illus. in color.
Dimensiuni: 155 x 235 x 27 mm
Greutate: 0.63 kg
Ediția:2014
Editura: Springer International Publishing
Colecția Springer
Seria Lecture Notes of the Unione Matematica Italiana
Locul publicării:Cham, Switzerland
ISBN-10: 3319065130
Pagini: 436
Ilustrații: XI, 436 p. 43 illus., 18 illus. in color.
Dimensiuni: 155 x 235 x 27 mm
Greutate: 0.63 kg
Ediția:2014
Editura: Springer International Publishing
Colecția Springer
Seria Lecture Notes of the Unione Matematica Italiana
Locul publicării:Cham, Switzerland
Public țintă
ResearchCuprins
Oren Ben-Bassat and Elizabeth Gasparim: Moduli Stacks of Bundles on Local Surfaces.- David Favero, Fabian Haiden and Ludmil Katzarkov: An orbit construction of phantoms, Orlov spectra and Knörrer Periodicity.- Stéphane Guillermou and Pierre Schapira: Microlocal theory of sheaves and Tamarkin’s non displaceability theorem.- Sergei Gukov and Piotr Sułkowski: A-polynomial, B-model and Quantization.- M. Kapranov, O. Schiffmann, E. Vasserot: Spherical Hall Algebra of Spec(Z).- Maxim Kontsevich and Yan Soibelman: Wall-crossing structures in Donaldson-Thomas invariants, integrable systems and mirror Symmetry.- Grigory Mikhalkin and Ilia Zharkov: Tropical eigen wave and intermediate Jacobians.- Andrew Neitzke: Notes on a new construction of hyperkahler metrics.- Helge Ruddat: Mirror duality of Landau-Ginzburg models via Discrete Legendre Transforms.- Nicolo Sibilla: Mirror Symmetry in dimension one and Fourier-Mukai transforms.- Alexander Soibelman: The very good property for moduli of parabolic bundles and the additive Deligne-Simpson problem.
Textul de pe ultima copertă
The relationship between Tropical Geometry and Mirror Symmetry goes back to the work of Kontsevich and Y. Soibelman (2000), who applied methods of non-archimedean geometry (in particular, tropical curves) to Homological Mirror Symmetry. In combination with the subsequent work of Mikhalkin on the “tropical” approach to Gromov-Witten theory, and the work of Gross and Siebert, Tropical Geometry has now become a powerful tool.
Homological Mirror Symmetry is the area of mathematics concentrated around several categorical equivalences connecting symplectic and holomorphic (or algebraic) geometry. The central ideas first appeared in the work of Maxim Kontsevich (1993). Roughly speaking, the subject can be approached in two ways: either one uses Lagrangian torus fibrations of Calabi-Yau manifolds (the so-called Strominger-Yau-Zaslow picture, further developed by Kontsevich and Soibelman) or one uses Lefschetz fibrations of symplectic manifolds (suggested by Kontsevich and further developed by Seidel). Tropical Geometry studies piecewise-linear objects which appear as “degenerations” of the corresponding algebro-geometric objects.
Homological Mirror Symmetry is the area of mathematics concentrated around several categorical equivalences connecting symplectic and holomorphic (or algebraic) geometry. The central ideas first appeared in the work of Maxim Kontsevich (1993). Roughly speaking, the subject can be approached in two ways: either one uses Lagrangian torus fibrations of Calabi-Yau manifolds (the so-called Strominger-Yau-Zaslow picture, further developed by Kontsevich and Soibelman) or one uses Lefschetz fibrations of symplectic manifolds (suggested by Kontsevich and further developed by Seidel). Tropical Geometry studies piecewise-linear objects which appear as “degenerations” of the corresponding algebro-geometric objects.