Cantitate/Preț
Produs

How to Ace the Rest of Calculus: The Streetwise Guide, Including Multivariable Calculus: How to Ace S

Autor Colin C. Adams, Abigail Thompson, Joel Hass
en Limba Engleză Paperback – 30 apr 2001
The sequel to How to Ace Calculus, How to Ace the Rest of Calculus provides humorous and highly readable explanations of the key topics of second and third semester calculus—such as sequences and series, polor coordinates, and multivariable calculus—without the technical details and fine print that would be found in a formal text.
Citește tot Restrânge

Preț: 13415 lei

Nou

Puncte Express: 201

Preț estimativ în valută:
2567 2701$ 2131£

Carte disponibilă

Livrare economică 26 decembrie 24 - 09 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780716741749
ISBN-10: 0716741741
Pagini: 304
Dimensiuni: 184 x 233 x 21 mm
Greutate: 0.51 kg
Editura: Times Books
Seria How to Ace S


Notă biografică

Colin Adams is Professor of Mathematics at Williams College. He is the author of The Knot Book and winner of the Mathematical Association of America Distinguished Teaching Award for 1998. Joel Hass is Professor of Mathematics at the University of California at Davis, and Abigail Thompson is also Professor of Mathematics at the University of California at Davis. Adams, Hass, and Thompson are co-authors of How to Ace Calculus.

Descriere

Written by three gifted teachers, this book provides humorous and highly readable explanations of the key topics of second and third semester calculus--such as sequences and series, polar coordinates and multivariable calculus--without the technical details and fine print that would be found in a formal text. 80 illustrations.

Cuprins

Introduction

Indeterminate Forms and Improper Integrals
2.1 Indeterminate forms
2.2 Improper integrals

Polar Coordinates
3.1 Introduction to polar coordinates
3.2 Area in polar coordinates

Infinite Series
4.1 Sequences
4.2 Limits of sequences
4.3 Series: The basic idea
4.4 Geometric series: The extroverts
4.5 The nth-term test
4.6 Integral test and p-series: More friends
4.7 Comparison tests
4.8 Alternating series and absolute convergence
4.9 More tests for convergence
4.10 Power series
4.11 Which test to apply when?
4.12 Taylor series
4.13 Taylor's formula with remainder
4.14 Some famous Taylor series

Vectors: From Euclid to Cupid
5.1 Vectors in the plane
5.2 Space: The final (exam) frontier
5.3 Vectors in space
5.4 The dot product
5.5 The cross product
5.6 Lines in space
5.7 Planes in space

Parametric Curves in Space: Riding the Roller Coaster
6.1 Parametric curves
6.2 Curvature
6.3 Velocity and acceleration

Surfaces and Graphing
7.1 Curves in the plane: A retrospective
7.2 Graphs of equations in 3-D space
7.3 Surfaces of revolution
7.4 Quadric surfaces (the -oid surfaces)

Functions of Several Variables and Their Partial Derivatives
8.1 Functions of several variables
8.2 Contour curves
8.3 Limits
8.4 Continuity
8.5 Partial derivatives
8.6 Max-min problems

cf08.7 The chain rule
8.8 The gradient and directional derivatives
8.9 Lagrange multipliers
8.10 Second derivative test

Multiple Integrals
9.1 Double integrals and limits-the technical stuff
9.2 Calculating double integrals
9.3 Double integrals and volumes under a graph
9.4 Double integrals in polar coordinates
9.5 Triple integrals
9.6 Cylindrical and spherical coordinates
9.7 Mass, center of mass, and moments
9.8 Change of coordinates

Vector Fields and the Green-Stokes Gang
10.1 Vector fields
10.2 Getting acquainted with div and curl
10.3 Line up for line integrals
10.4 Line integrals of vector fields
10.5 Conservative vector fields
10.6 Green's theorem
10.7 Integrating the divergence; the divergence theorem
10.8 Surface integrals
10.9 Stoking!

What's Going to Be on the Final?

Glossary: A Quick Guide to the Mathematical Jargon

Index

Just the Facts: A Quick Reference Guide