Hybrid and Incompatible Finite Element Methods: Modern Mechanics and Mathematics
Autor Theodore H. H. Pian, Chang-Chun Wuen Limba Engleză Hardback – 4 noi 2005
Preț: 879.23 lei
Preț vechi: 1180.28 lei
-26% Nou
Puncte Express: 1319
Preț estimativ în valută:
168.27€ • 175.21$ • 142.21£
168.27€ • 175.21$ • 142.21£
Comandă specială
Livrare economică 17 februarie-03 martie
Doresc să fiu notificat când acest titlu va fi disponibil:
Se trimite...
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781584882763
ISBN-10: 158488276X
Pagini: 394
Ilustrații: 167 b/w images, 41 tables and 980 equations
Dimensiuni: 156 x 234 x 23 mm
Greutate: 0.66 kg
Ediția:1
Editura: CRC Press
Colecția Chapman and Hall/CRC
Seria Modern Mechanics and Mathematics
ISBN-10: 158488276X
Pagini: 394
Ilustrații: 167 b/w images, 41 tables and 980 equations
Dimensiuni: 156 x 234 x 23 mm
Greutate: 0.66 kg
Ediția:1
Editura: CRC Press
Colecția Chapman and Hall/CRC
Seria Modern Mechanics and Mathematics
Public țintă
ProfessionalCuprins
Variational Formulation of Finite Element Methods in Solid Mechanics. Foundation of Incompatible Analysis. Elements for the Theory of Elasticity. Foundation in Mechanics of Hybrid Stress Elements. Optimization of Hybrid-Stress Finite Elements. Numerical Stability: Zero Energy Mode Analysis. Plastic Analysis of Structures. Computational Fracture. Computational Materials. Finite Element Implementation.
Notă biografică
Pian\, Theodore H.H.; Wu\, Chang-Chun
Recenzii
“… is useful for graduate students in computational mechanics.”
Mathematical Reviews, Issue 2006m.
Mathematical Reviews, Issue 2006m.
Descriere
Hybrid and Incompatible Finite Element Methods reduces theory and abstract mathematics into practical tools. Beginning with an introduction to the variational formulation of finite element methods in solid mechanics, the authors introduce recent advances in the theory and applications of incompatible and multivariable finite element methods. They present a discussion of fundamental theories, laying the theoretical foundation for incompatible elements and their application in plasticity theory and introducing new ideas in the development of hybrid finite elements. The final chapters explore applications to fracture problems and demonstrate the implementation of a finite element analysis program.