Cantitate/Preț
Produs

Hybrid Competitive Learning Method Using the Fireworks Algorithm and Artificial Neural Networks: SpringerBriefs in Applied Sciences and Technology

Autor Fevrier Valdez, Juan Barraza, Patricia Melin
en Limba Engleză Paperback – 26 noi 2023
This book focuses on the fields of neural networks, swarm optimization algorithms, clustering and fuzzy logic. This book describes a hybrid method with three different techniques of intelligence computation: neural networks, optimization algorithms and fuzzy logic.  Within the neural network techniques, competitive neural networks (CNNs) are used, for the optimization algorithms technique, we used the fireworks algorithm (FWA), and in the area of fuzzy logic, the Type-1 Fuzzy Inference Systems (T1FIS) and the Interval Type-2 Fuzzy Inference Systems (IT2FIS) were used, with their variants of Mamdani and Sugeno type, respectively. FWA was adapted for data clustering with the goal to help of competitive neural network to find the optimal number of neurons. It is important to mention that two variants were applied to the FWA: dynamically adjust of parameters with Type-1 Fuzzy Logic (FFWA) as the first one and Interval Type-2 (F2FWA) as the second one. Subsequently, based on the outputs of the CNN and with the goal of classification data, we designed Type-1 and Interval Type-2 Fuzzy Inference Systems of Mamdani and Sugeno type. This book is intended to be a reference for scientists and engineers interested in applying a different metaheuristic or an artificial neural network in order to solve optimization and applied fuzzy logic techniques for solving problems in clustering and classification data. This book is also used as a reference for graduate courses like the following: soft computing, swarm optimization algorithms, clustering data, fuzzy classify and similar ones. We consider that this book can also be used to get novel ideas for new lines of research, new techniques of optimization or to continue the lines of the research proposed by the authors of the book.
Citește tot Restrânge

Din seria SpringerBriefs in Applied Sciences and Technology

Preț: 29486 lei

Preț vechi: 36858 lei
-20% Nou

Puncte Express: 442

Preț estimativ în valută:
5644 5816$ 4765£

Carte tipărită la comandă

Livrare economică 01-15 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783031477119
ISBN-10: 3031477111
Ilustrații: VIII, 103 p. 32 illus., 19 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.17 kg
Ediția:1st ed. 2023
Editura: Springer Nature Switzerland
Colecția Springer
Seriile SpringerBriefs in Applied Sciences and Technology, SpringerBriefs in Computational Intelligence

Locul publicării:Cham, Switzerland

Cuprins




Textul de pe ultima copertă

This book focuses on the fields of neural networks, swarm optimization algorithms, clustering and fuzzy logic. This book describes a hybrid method with three different techniques of intelligence computation: neural networks, optimization algorithms and fuzzy logic.  Within the neural network techniques, competitive neural networks (CNNs) are used, for the optimization algorithms technique, we used the fireworks algorithm (FWA), and in the area of fuzzy logic, the Type-1 Fuzzy Inference Systems (T1FIS) and the Interval Type-2 Fuzzy Inference Systems (IT2FIS) were used, with their variants of Mamdani and Sugeno type, respectively. FWA was adapted for data clustering with the goal to help of competitive neural network to find the optimal number of neurons. It is important to mention that two variants were applied to the FWA: dynamically adjust of parameters with Type-1 Fuzzy Logic (FFWA) as the first one and Interval Type-2 (F2FWA) as the second one. Subsequently, based on the outputs of the CNN and with the goal of classification data, we designed Type-1 and Interval Type-2 Fuzzy Inference Systems of Mamdani and Sugeno type. This book is intended to be a reference for scientists and engineers interested in applying a different metaheuristic or an artificial neural network in order to solve optimization and applied fuzzy logic techniques for solving problems in clustering and classification data. This book is also used as a reference for graduate courses like the following: soft computing, swarm optimization algorithms, clustering data, fuzzy classify and similar ones. We consider that this book can also be used to get novel ideas for new lines of research, new techniques of optimization or to continue the lines of the research proposed by the authors of the book.


Caracteristici

Focuses on the fields of artificial neural network, swarm optimization algorithms, and clustering problems Describes a hybrid method with three different techniques of Intelligence Computation Covers recent research on Hybrid Competitive Learning