Hyperautomation in Precision Agriculture: Advancements and Opportunities for Sustainable Farming
Editat de Sartajvir Singh, Vishakha Sood, Arun Lal Srivastav, Yiannis Ampatzidisen Limba Engleză Paperback – 22 noi 2024
Hyperautomation is a true digital transformation in sustainable agriculture utilizing advanced techniques such as robotic process automation (RPA), digital process automation (DPA), unmanned aerial vehicle (UAV), controlled-environment agriculture (CEA), remote sensing, internet of things (IoT), crop modeling, precision farming, sustainable yield, image analysis, data fusion, artificial intelligence (AI), machine learning (ML), and deep learning (DL).
- Provides a comprehensive overview of the current state-of-the-art of automation in agriculture
- Enables improved productivity and resource optimization
- Presents advanced monitoring/mapping methods in soil properties, nutrients, crop growth, and yield
Preț: 943.13 lei
Preț vechi: 1241.96 lei
-24% Nou
Puncte Express: 1415
Preț estimativ în valută:
180.51€ • 188.14$ • 150.27£
180.51€ • 188.14$ • 150.27£
Carte disponibilă
Livrare economică 09-23 decembrie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780443241390
ISBN-10: 0443241392
Pagini: 400
Dimensiuni: 191 x 235 mm
Greutate: 0.45 kg
Editura: ELSEVIER SCIENCE
ISBN-10: 0443241392
Pagini: 400
Dimensiuni: 191 x 235 mm
Greutate: 0.45 kg
Editura: ELSEVIER SCIENCE
Cuprins
Section I: Fundamentals of Hyperautomation technology for sustainable agriculture
1. A global overview and the fundamentals of sustainable agriculture
2. Smart Contracts for Efficient Resource Allocation and Management in Hyperautomated Agriculture Information Systems
3. Towards Smart Farming: Applications of Artificial Intelligence and Internet of Things in Precision Agriculture
4. Hyperautomation in agriculture sector by technological devices towards irrigation, crop harvest and storage
5. AI-Powered Agriculture and Sustainable Practices in Developing Countries
Section II: Smart agriculture automation using advanced technologies
6. A light-weight Deep Learning model for plant disease detection in hyperautomation
7. Mapping and Retrieval of Agricultural Parameters using Artificial Intelligence
8. Sustainable Plant Disease Protection Using Machine Learning and Deep Learning
9. Cereal crop yield prediction using machine learning techniques
10. Estimation of soil properties for sustainable crop production using multisource data fusion
Section III: Advances in remote sensing for precision crop production
11. Detecting the stages of Ragi crop diseases using satellite data in villages of Nanjangud taluk
12. Soil and field analysis using unmanned aerial vehicles (UAV) for smart and sustainable farming
13. Crop Land Assessment with Deep Neural Network using Hyperspectral Satellite Dataset
14. Development of Soil moisture maps using image fusion of MODIS and optical dataset
15. Advance remote sensing technologies for crop disease and pest detection
16. Estimating Soil Moisture in Semi-Arid Areas for Winter Wheat Using Sentinel-1 and Support Vector Algorithms
Section IV: Robotic/Digital Process Automation (RPA/DPA) in agriculture and field applications
17. Autonomous Robotic Leaf Retrieval
18. Robotics-assisted precision and sustainable irrigation, harvesting and fertilizing processes
19. Computer Vision Technology for Weed Detection
20. LiDAR/RADAR robots in monitoring and mapping crop growth for sustainable crop production
Section V: Emerging trends and case studies in Hyperautomation of Sustainable Agriculture
21. Is Hyper-automation is playing a significant role in Smart Agriculture?
22. Predictive Irrigation: Current practice and Future Prospects
23. Design and fabrication of quad copter for agriculture seeding
24. hallenges and future trends in the Hyperautomation of Sustainable Agriculture
25. Techniques and applications of deep learning in smart agriculture systems
26. Investigation of Automated Plant disease detection Framework using Machine Learning Classifier with novel Segmentation and Feature Extraction Strategy
27. Hyperautomation in precision agriculture using different unmanned aerial vehicles (UAV)
28. Emerging Trends of hyperautomation in decision-making process & sustainable crop production
29. Remote sensors for hyper-automation in agriculture
1. A global overview and the fundamentals of sustainable agriculture
2. Smart Contracts for Efficient Resource Allocation and Management in Hyperautomated Agriculture Information Systems
3. Towards Smart Farming: Applications of Artificial Intelligence and Internet of Things in Precision Agriculture
4. Hyperautomation in agriculture sector by technological devices towards irrigation, crop harvest and storage
5. AI-Powered Agriculture and Sustainable Practices in Developing Countries
Section II: Smart agriculture automation using advanced technologies
6. A light-weight Deep Learning model for plant disease detection in hyperautomation
7. Mapping and Retrieval of Agricultural Parameters using Artificial Intelligence
8. Sustainable Plant Disease Protection Using Machine Learning and Deep Learning
9. Cereal crop yield prediction using machine learning techniques
10. Estimation of soil properties for sustainable crop production using multisource data fusion
Section III: Advances in remote sensing for precision crop production
11. Detecting the stages of Ragi crop diseases using satellite data in villages of Nanjangud taluk
12. Soil and field analysis using unmanned aerial vehicles (UAV) for smart and sustainable farming
13. Crop Land Assessment with Deep Neural Network using Hyperspectral Satellite Dataset
14. Development of Soil moisture maps using image fusion of MODIS and optical dataset
15. Advance remote sensing technologies for crop disease and pest detection
16. Estimating Soil Moisture in Semi-Arid Areas for Winter Wheat Using Sentinel-1 and Support Vector Algorithms
Section IV: Robotic/Digital Process Automation (RPA/DPA) in agriculture and field applications
17. Autonomous Robotic Leaf Retrieval
18. Robotics-assisted precision and sustainable irrigation, harvesting and fertilizing processes
19. Computer Vision Technology for Weed Detection
20. LiDAR/RADAR robots in monitoring and mapping crop growth for sustainable crop production
Section V: Emerging trends and case studies in Hyperautomation of Sustainable Agriculture
21. Is Hyper-automation is playing a significant role in Smart Agriculture?
22. Predictive Irrigation: Current practice and Future Prospects
23. Design and fabrication of quad copter for agriculture seeding
24. hallenges and future trends in the Hyperautomation of Sustainable Agriculture
25. Techniques and applications of deep learning in smart agriculture systems
26. Investigation of Automated Plant disease detection Framework using Machine Learning Classifier with novel Segmentation and Feature Extraction Strategy
27. Hyperautomation in precision agriculture using different unmanned aerial vehicles (UAV)
28. Emerging Trends of hyperautomation in decision-making process & sustainable crop production
29. Remote sensors for hyper-automation in agriculture