Cantitate/Preț
Produs

Hyperresolutions cubiques et descente cohomologique: Lecture Notes in Mathematics, cartea 1335

Autor Francisco Guillen, Vincente Navarro Aznar, Pedro Pascual-Gainza, Fernando Puerta
fr Limba Franceză Paperback – 27 iul 1988
This monograph establishes a general context for the cohomological use of Hironaka's theorem on the resolution of singularities. It presents the theory of cubical hyperresolutions, and this yields the cohomological properties of general algebraic varieties, following Grothendieck's general ideas on descent as formulated by Deligne in his method for simplicial cohomological descent. These hyperrésolutions are applied in problems concerning possibly singular varieties: the monodromy of a holomorphic function defined on a complex analytic space, the De Rham cohmomology of varieties over a field of zero characteristic, Hodge-Deligne theory and the generalization of Kodaira-Akizuki-Nakano's vanishing theorem to singular algebraic varieties. As a variation of the same ideas, an application of cubical quasi-projective hyperresolutions to algebraic K-theory is given.
Citește tot Restrânge

Din seria Lecture Notes in Mathematics

Preț: 18179 lei

Nou

Puncte Express: 273

Preț estimativ în valută:
3479 3660$ 2888£

Carte tipărită la comandă

Livrare economică 16-30 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783540500230
ISBN-10: 3540500235
Pagini: 212
Ilustrații: XII, 192 p.
Dimensiuni: 155 x 235 x 11 mm
Greutate: 0.3 kg
Ediția:1988
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Lecture Notes in Mathematics

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

Hyperresolutions cubiques.- Theoremes sur la monodromie.- Descente cubique de la cohomologie de De Rham algebrique.- Applications des hyperresolutions cubiques a la theorie de hodge.- Theoremes d'annulation.- Descente cubique pour la K-theorie des faisceaux coherents et l'homologie de Chow.