Cantitate/Preț
Produs

Integration and Cubature Methods: A Geomathematically Oriented Course: Chapman & Hall/CRC Monographs and Research Notes in Mathematics

Autor Willi Freeden, Martin Gutting
en Limba Engleză Hardback – 27 noi 2017
In industry and economics, the most common solutions of partial differential equations involving multivariate numerical integration over cuboids include techniques of iterated one-dimensional approximate integration. In geosciences, however, the integrals are extended over potato-like volumes (such as the ball, ellipsoid, geoid, or the Earth) and their boundary surfaces which require specific multi-variate approximate integration methods. Integration and Cubature Methods: A Geomathematically Oriented Course provides a basic foundation for students, researchers, and practitioners interested in precisely these areas, as well as breaking new ground in integration and cubature in geomathematics.
Citește tot Restrânge

Din seria Chapman & Hall/CRC Monographs and Research Notes in Mathematics

Preț: 88329 lei

Preț vechi: 118267 lei
-25% Nou

Puncte Express: 1325

Preț estimativ în valută:
16904 17439$ 14307£

Carte tipărită la comandă

Livrare economică 05-19 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781138718821
ISBN-10: 1138718823
Pagini: 531
Ilustrații: 62
Dimensiuni: 156 x 234 x 40 mm
Greutate: 0.88 kg
Ediția:1
Editura: CRC Press
Colecția Chapman and Hall/CRC
Seria Chapman & Hall/CRC Monographs and Research Notes in Mathematics


Cuprins

Introduction. Integration Based on 1D Algebraic Polynomials. Integration Based on 1D Periodical Polynomials. Integration Based on 1D Legendre Polynomials. Integration Based on qD Periodical Context. Summation Formulas Involving Polyharmonic Splines. Euler Summation and Sampling. Integration Based on 3D Spherical Polynomials. Integration Based on Spherical Polynomials. Discrepancy Method for Regular Surfaces.

Descriere

Integration and Cubature Methods: A Geomathematically Oriented Course provides a basic foundation for students, researchers, and practitioners interested in precisely these areas, as well as breaking new ground in integration and cubature in geomathematics.