Integration and Visualization of Gene Selection and Gene Regulatory Networks for Cancer Genome
Autor Shruti Mishra, Debahuti Mishra, Sandeep Kumar Satapathyen Limba Engleză Paperback – 10 mai 2018
- Provides well described techniques for the purpose of gene selection/feature selection for the generation of gene subsets
- Presents and analyzes three different types of gene selection algorithms: Support Vector Machine-Bayesian T-Test-Recursive Feature Elimination (SVM-BT-RFE), Canonical Correlation Analysis-Trace Ratio (CCA-TR), and Signal-To-Noise Ratio-Trace Ratio (SNRTR)
- Consolidates fundamental knowledge on gene datasets and current techniques on gene regulatory networks into a single resource
Preț: 455.20 lei
Preț vechi: 494.78 lei
-8% Nou
Puncte Express: 683
Preț estimativ în valută:
87.12€ • 90.49$ • 72.36£
87.12€ • 90.49$ • 72.36£
Carte tipărită la comandă
Livrare economică 27 ianuarie-10 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780128163566
ISBN-10: 0128163569
Pagini: 200
Ilustrații: 40 illustrations (20 in full color)
Dimensiuni: 191 x 235 x 9 mm
Editura: ELSEVIER SCIENCE
ISBN-10: 0128163569
Pagini: 200
Ilustrații: 40 illustrations (20 in full color)
Dimensiuni: 191 x 235 x 9 mm
Editura: ELSEVIER SCIENCE
Public țintă
Bioinformaticians, Cancer Researchers, researchers interested in applying Systems Biology approaches to their studiesGeneticists, Bioengineers, researchers interested in Machine learning, Data Mining, Bioinformatics
Cuprins
1. Literature Review2. SVM-BT-RFE: An Improved Gene Selection Framework Using Bayesian T-Test Embedded in Support Vector Machine (Recursive Feature Elimination) Algorithm3. Enhanced Gene Ranking Approaches Using Modified Trace Ratio Algorithm for Gene Expression Data4. SNR-TR Gene Ranking Method: A Signal-to-Noise Ratio Based Gene Selection Algorithm Using Trace Ratio for Gene Expression Data5. Visualization of Interactive Gene Regulatory Network Using Gene Selection Techniques from Expression Data6. Conclusion and Future Work