Integrative Omics in Parkinson's Disease
Editat de Joanne Trinhen Limba Engleză Paperback – 24 sep 2024
- Reviews evolution of omics technologies from the first identification of monogenic forms of Parkinson’s disease
- Outlines machine learning algorithm application to Parkinson’s disease datasets
- Reviews big datasets on gene-environment interactions, genomics, epigenetics, and transcriptomics
- Identifies how the microbiome influences Parkinson’s disease in mouse models and patients
- Provides outlook for therapies with induced-pluripotent stem cell models
Preț: 771.49 lei
Preț vechi: 1012.98 lei
-24% Nou
Puncte Express: 1157
Preț estimativ în valută:
147.69€ • 153.52$ • 122.45£
147.69€ • 153.52$ • 122.45£
Carte tipărită la comandă
Livrare economică 30 ianuarie-13 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780443135507
ISBN-10: 0443135509
Pagini: 274
Dimensiuni: 152 x 229 mm
Greutate: 0.45 kg
Editura: ELSEVIER SCIENCE
ISBN-10: 0443135509
Pagini: 274
Dimensiuni: 152 x 229 mm
Greutate: 0.45 kg
Editura: ELSEVIER SCIENCE
Cuprins
1. Introduction: evolution of omics
2. Monogenic and Complex genetics PD
3. Genetic risk scores
4. Mendelian Randomization
5. Methods to investigate somatic structural variants in synucleinopathies
6. Mitochondrial genetics
7. Epigenetics in PD genes
8. The microbiome
9. Genetic modifiers in reduced penetrance: X-linked dystonia
10. Long-read transcriptomics in neurodegeneration
11. Gene-environment interactions and behaviour
12. Introduction to prediction modeling using machine learning and omics data
13. IPSCs and OMICs merging
2. Monogenic and Complex genetics PD
3. Genetic risk scores
4. Mendelian Randomization
5. Methods to investigate somatic structural variants in synucleinopathies
6. Mitochondrial genetics
7. Epigenetics in PD genes
8. The microbiome
9. Genetic modifiers in reduced penetrance: X-linked dystonia
10. Long-read transcriptomics in neurodegeneration
11. Gene-environment interactions and behaviour
12. Introduction to prediction modeling using machine learning and omics data
13. IPSCs and OMICs merging