Cantitate/Preț
Produs

Intelligent Software Defect Prediction

Autor Xiao-Yuan Jing, Haowen Chen, Baowen Xu
en Limba Engleză Hardback – 18 ian 2024
With the increasing complexity of and dependency on software, software products may suffer from low quality, high prices, be hard to maintain, etc. Software defects usually produce incorrect or unexpected results and behaviors. Accordingly, software defect prediction (SDP) is one of the most active research fields in software engineering and plays an important role in software quality assurance. Based on the results of SDP analyses, developers can subsequently conduct defect localization and repair on the basis of reasonable resource allocation, which helps to reduce their maintenance costs.
This book offers a comprehensive picture of the current state of SDP research. More specifically, it introduces a range of machine-learning-based SDP approaches proposed for different scenarios (i.e., WPDP, CPDP, and HDP). In addition, the book shares in-depth insights into current SDP approaches’ performance and lessons learned for future SDP research efforts.
We believe thesetheoretical analyses and emerging challenges will be of considerable interest to all researchers, graduate students, and practitioners who want to gain deeper insights into and/or find new research directions in SDP. It offers a comprehensive introduction to the current state of SDP and detailed descriptions of representative SDP approaches.

Citește tot Restrânge

Preț: 104639 lei

Preț vechi: 130799 lei
-20% Nou

Puncte Express: 1570

Preț estimativ în valută:
20025 20659$ 16948£

Carte tipărită la comandă

Livrare economică 04-18 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9789819928415
ISBN-10: 9819928419
Pagini: 205
Ilustrații: XI, 205 p. 1 illus.
Dimensiuni: 155 x 235 mm
Greutate: 0.49 kg
Ediția:1st ed. 2023
Editura: Springer Nature Singapore
Colecția Springer
Locul publicării:Singapore, Singapore

Cuprins

Chapter 1 Introduction.- Chapter 2 Application of Machine Learning Techniques in Intelligent SDP.- Chapter 3 Within-Project Defect Prediction.- Chapter 4 Cross-Project Defect Prediction.- Chapter 5 Heterogeneous Defect Prediction.- Chapter 6 Empirical Findings on HDP Approaches.- Chapter 7 Other Research Questions of SDP.- Chapter 8 Conclusions.

Notă biografică

Xiao-Yuan Jing is a Professor at the School of Computer Science, Wuhan University. Prof. Jing’s research interests include software defect prediction, software effort estimation, and software engineering. His research has been published in authoritative software engineering journals and conference proceedings, such as IEEE Transactions on Software Engineering, Empirical Software Engineering, IEEE Transactions on Reliability, Information and Software Technology, Automated Software Engineering, ICSE, FSE, ASE, and ICSME. He has also pursued research on pattern recognition, machine learning, and artificial intelligence. He has published a range of studies in leading artificial intelligence journals and conference proceedings, including IEEE Transactions on Pattern Analysis and Machine Intelligence, IEEE Transactions on Neural Networks and Learning Systems, IEEE Transactions on Information Forensics and Security, CVPR, AAAI, and IJCAI. He has been selected as a highly cited Chineseresearcher by Elsevier.
Haowen Chen is a Ph.D. candidate at the School of Computer Science, Wuhan University. Mr. Chen is currently working toward his Ph.D. degree at the School of Computer Science, Wuhan University. His research interests include software engineering and machine learning. His research has been published in IEEE Transactions on Software Engineering, Information and Software Technology, ICSE, etc.
Baowen Xu is a Professor at the Department of Computer Science and Technology, Nanjing University. Prof. Xu has pursued research on the theory, methodology, and technology research of test-driven software defect diagnosis and analysis, since the late 1980s. He has obtained a number of internationally advanced research results, which have had a substantial impact in this research field. He has undertaken more than 30 research projects from the Ministry of Aerospace Industry, China State Shipbuilding Corporation, the National Natural Science Foundation of China, theMinistry of Education, the Ministry of Science and Technology, Jiangsu Province, and enterprises such as Huawei, ZTE and Intel. Prof. Xu has received support from the National Science Fund for Distinguished Young Scholars, the National Natural Science Foundation of China (including the Major Research Plan, State Key Program, General Program, and International Joint Research Program), the National Basic Research Program of China, the Key Program and General Program of the National High Technology Research and Development Program of China, the Science and Technology Development Program, the High Technological Program, and the Natural Science Foundation of Jiangsu Province. He has published more than 300 papers, including in leading venues such as TOSEM, TSE, ICSE, FSE, IJCAI, etc. He has also served as the general chair, program committee chair or program committee member for more than 100 prominent academic conferences.



Textul de pe ultima copertă

With the increasing complexity of and dependency on software, software products may suffer from low quality, high prices, be hard to maintain, etc. Software defects usually produce incorrect or unexpected results and behaviors. Accordingly, software defect prediction (SDP) is one of the most active research fields in software engineering and plays an important role in software quality assurance. Based on the results of SDP analyses, developers can subsequently conduct defect localization and repair on the basis of reasonable resource allocation, which helps to reduce their maintenance costs.
This book offers a comprehensive picture of the current state of SDP research. More specifically, it introduces a range of machine-learning-based SDP approaches proposed for different scenarios (i.e., WPDP, CPDP, and HDP). In addition, the book shares in-depth insights into current SDP approaches’ performance and lessons learned for future SDP research efforts.
We believe these theoretical analyses and emerging challenges will be of considerable interest to all researchers, graduate students, and practitioners who want to gain deeper insights into and/or find new research directions in SDP. It offers a comprehensive introduction to the current state of SDP and detailed descriptions of representative SDP approaches.


Caracteristici

Provides a comprehensive introduction to the current state of SDP research Introduces a range of machine-learning-based SDP approaches proposed for different scenarios Provides valuable insights and lessons learned from current SDP approaches for future research efforts in the field