Introduction to Aerospace Engineering – Basic Principles of Flight
Autor E Rathakrishnanen Limba Engleză Hardback – 28 iul 2021
Preț: 692.29 lei
Preț vechi: 804.98 lei
-14% Nou
Puncte Express: 1038
Preț estimativ în valută:
132.53€ • 136.30$ • 109.95£
132.53€ • 136.30$ • 109.95£
Carte disponibilă
Livrare economică 29 ianuarie-12 februarie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781119807155
ISBN-10: 1119807158
Pagini: 256
Dimensiuni: 183 x 257 x 20 mm
Greutate: 0.7 kg
Editura: Wiley
Locul publicării:Chichester, United Kingdom
ISBN-10: 1119807158
Pagini: 256
Dimensiuni: 183 x 257 x 20 mm
Greutate: 0.7 kg
Editura: Wiley
Locul publicării:Chichester, United Kingdom
Notă biografică
Ethirajan Rathakrishnan, PhD, is a Professor of Aerospace Engineering at the Indian Institute of Technology Kanpur, India, where he has more than 30 years' experience teaching Introduction to Aerospace Engineering courses at the undergraduate and graduate levels. He is the Editor-in-Chief for the International Review of Aerospace Engineering and the author of many books on aerospace and mechanical engineering topics. Professor Rathakrishnan is internationally-recognized for his research and development in the area of high-speed jets.
Cuprins
Preface vii
About the Author viii
1 Basics 1
1.1 Introduction 1
1.2 Overview 2
1.3 Modern Era 3
1.3.1 Actual Flights 5
1.3.2 Compressibility Issues 5
1.3.3 Supersonic Speeds 7
1.3.4 Continuity Concept 9
1.4 Conservation Laws 9
1.4.1 Conservation of Mass 9
1.4.2 Conservation of Momentum 10
1.4.3 Conservation of Energy 11
1.5 Incompressible Aerodynamics 11
1.5.1 Subsonic flow 12
1.6 Compressible Aerodynamics 12
1.6.1 Transonic Flow 12
1.6.2 Supersonic Flow 13
1.6.3 Hypersonic Flow 13
1.7 Vocabulary 14
1.7.1 Boundary Layers 14
1.7.2 Turbulence 14
1.8 Aerodynamics in Other Fields 14
1.9 Summary 15
2 International Standard Atmosphere 21
2.1 Layers in the ISA 22
2.1.1 ICAO Standard Atmosphere 22
2.1.2 Temperature Modeling 23
2.2 Pressure Modelling 24
2.2.1 Pressure above the Tropopause 26
2.3 Density Modeling 26
2.3.1 Other standard atmospheres 33
2.4 Relative Density 33
2.5 Altimeter 34
2.6 Summary 34
3 Aircraft Configurations 37
3.1 Structure 38
3.2 Propulsion 38
3.3 Summary 40
4 Low-Speed Aerofoils 43
4.1 Introduction 43
4.2 The Aerofoil 43
4.3 Aerodynamic Forces and Moments on an Aerofoil 44
4.4 Force and Moment Coefficients 45
4.5 Pressure Distribution 46
4.6 Variation of Pressure Distribution with Incidence Angle 50
4.7 The Lift Curve Slope 51
4.8 Profile Drag 53
4.9 Pitching Moment 54
4.10 Movement of Center of Pressure 58
4.11 Finite or Three-Dimensional Wing 59
4.12 Geometrical Parameters of a Finite Wing 59
4.12.1 Leading-edge Radius and Chord Line 60
4.12.2 Mean Camber Line 60
4.12.3 Thickness Distribution 60
4.12.4 Trailing-Edge Angle 61
4.13 Wing Geometrical Parameters 61
4.14 Span wise Flow Variation 65
4.15 Lift and Downwash 67
4.16 The Lift Curve of a Finite Wing 69
4.17 Induced Drag 71
4.18 The Total Drag of a Wing 74
4.19 Aspect Ratio Effect on Aerodynamic Characteristics 76
4.20 Pitching Moment 78
4.21 The Complete Aircraft 78
4.22 Straight and Level Flight 78
4.23 Total Drag 81
4.24 Reynolds Number Effect 82
4.25 Variation of Drag in Straight and Level Flight 83
4.26 The Minimum Power Condition 91
4.27 Minimum Drag - Velocity Ratio 92
4.28 The Stall 94
4.28.1 The Effect of Wing Section 94
4.28.2 Wing Planform Effect 95
4.29 The Effect of Protuberances 96
4.30 Summary 97
5 High-Lift Devices 103
5.1 Introduction 103
5.2 The Trailing Edge Flap 104
5.3 The Plain Flap 104
5.4 The Split Flap 106
5.5 The Slotted Flap 107
5.6 The Fowler Flap 108
5.7 Comparison of Different Types of Flaps 108
5.8 Flap Effect on Aerodynamic Center and Stability 110
5.9 The Leading Edge Slat 111
5.10 The Leading Edge Flap 112
5.11 Boundary Layer Control 114
5.11.1 Boundary Layer Blowing 114
5.12 Boundary Layer Suction 115
5.13 The Jet Flap 116
5.14 Summary 116
6 Thrust 119
6.1 Introduction 119
6.2 Thrust Generation 120
6.2.1 Types of Jet Engines 123
6.2.1.1 Turbojets 123
6.2.1.2 Turboprops 124
6.2.1.3 Turbofans 125
6.2.1.4 Turboshafts 126
6.2.1.5 Ramjets 126
6.3 Turbojet 126
6.4 Turboprop and Turboshaft Engines 127
6.5 Ramjet and Scramjet 128
6.6 The Ideal Ramjet 130
6.7 Rocket Propulsion 131
6.8 Propeller Engines 132
6.9 Thrust and Momentum 133
6.10 By-pass and Turbofan Engines 133
6.11 The Propeller 134
6.11.1 Working of a Propeller 135
6.11.2 Helix Angle and Blade Angle 136
6.11.3 Advance per Revolution 137
6.11.4 Pitch of a Propeller 138
6.11.5 Propeller Efficiency 139
6.11.6 Tip Speed 140
6.11.7 Variable Pitch 141
6.11.8 Number and Shape of Blades 142
6.12 The Slipstream 143
6.13 Gyroscopic Effect 144
6.14 Swing on Take-off 144
6.15 Thermodynamic Cycles of Jet Propulsion 144
6.15.1 Efficiency 145
6.15.2 Brayton Cycle 145
6.15.3 Ramjet Cycle 146
6.15.4 Turbojet cycle 147
6.15.5 Turbofan Cycle 148
6.16 Summary 148
7 Level Flight 151
7.1 Introduction 151
7.2 The Forces in Level Flight 151
7.3 Equilibrium Condition 152
7.4 Balancing the Forces 153
7.4.1 Control Surface 154
7.4.2 Tail-less and Tail-first Aircraft 155
7.4.3 Forces on Tail Plane 155
7.4.4 Effect of Downwash 157
7.4.5 Varying the Tail Plane Lift 157
7.4.6 Straight and Level Flight 158
7.4.7 Relation between Flight Speed and Angle of Attack 159
7.5 Range Maximum 160
7.5.1 Flying with Minimum Drag 161
7.6 Altitude Effect on Propeller Efficiency 161
7.7 Wind Effect on Range 162
7.8 Endurance of Flight 163
7.9 Range Maximum 163
7.10 Endurance of Jet Engine 164
7.11 Summary 165
8 Gliding 167
8.1 Introduction 167
8.2 Angle of Glide 168
8.3 Effect of weight on Gliding 169
8.4 Endurance of Glide 169
8.5 Gliding Angle 169
8.6 Landing 170
8.7 Stalling Speed 172
8.8 High Lift Aerofoils 173
8.9 Wing Loading 174
8.9.1 Calculation of Minimum Landing Speed 175
8.10 Landing Speed 177
8.11 Short and Vertical Take-off and Landing 178
8.11.1 Gyroplane 178
8.12 The Helicopter 179
8.13 Jet Lift 180
8.14 Hovercraft 180
8.15 Landing 180
8.16 Effect of Flaps on Trim 182
8.17 Summary 184
9 Performance 187
9.1 Introduction 187
9.2 Take-off 187
9.3 Climbing 188
9.4 Power Curves - Propeller Engine 189
9.5 Maximum and Minimum Speeds in Horizontal Flight 190
9.6 Effect of Engine Power Variation 191
9.7 Flight Altitude Effect on Engine Power 191
9.8 Ceiling 193
9.9 Effect of Weight on Performance 193
9.10 Jet Propulsion Effect on Performance 195
9.11 Summary 196
10 Stability and Control 199
10.1 Introduction 199
10.2 Longitudinal Stability 201
10.3 Longitudinal Dihedral 201
10.4 Lateral Stability 203
10.4.1 Dihedral Angle 203
10.4.2 High Wing and Low Center of Gravity 205
10.4.3 Lateral Stability of Aircraft with Sweepback 206
10.4.4 Fin Area and Lateral Stability 206
10.5 Directional Stability 207
10.6 Lateral and Directional Stability 209
10.7 Control of an Aircraft 210
10.8 Balanced Control 211
10.9 Mass Balance 214
10.10 Control at Low Speeds 215
10.11 Power Controls 219
10.12 Dynamic Stability 220
10.13 Summary 220
11 Manoeuvres 223
11.1 Introduction 223
11.2 Acceleration 224
11.3 Pulling out from a Dive 226
11.3.1 The Load Factor 227
11.3.2 Turning 228
11.3.3 Loads During a Turn 229
11.4 Correct Angles of Bank 229
11.5 Other Problems of Turning 230
11.6 Steep Bank 232
11.7 Aerobatics 233
11.8 Inverted Manoeuvres 238
11.9 Abnormal Weather 239
11.10 Manoeuvrability 239
11.11 Summary 240
12 Rockets 243
12.1 Introduction 243
12.2 Chemical Rocket 244
12.3 Engine design 246
12.4 Thrust Generation 248
12.5 Specific Impulse 249
12.6 Rocket Equation 250
12.7 Efficiency 252
12.8 Trajectories 253
12.8.1 Newton's Laws of Motion 254
12.8.2 Newton's Laws of Gravitation 254
12.8.3 Kepler's Laws of Planetary Motion 254
12.8.4 Some Important Equations of Orbital Dynamics 255
12.8.5 Lagrange Points 255
12.8.6 Hohmann Minimum-Energy Trajectory 256
12.8.7 Gravity Assist 256
12.9 High-Exhaust-Velocity, Low-Thrust Trajectories 257
12.9.1 High-Exhaust-Velocity Rocket Equation 258
12.10 Plasma and Electric Propulsion 259
12.10.1 Types of Plasma Engines 260
12.11 Pulsed Plasma Thruster 261
12.11.1Operating Principle 261
12.12 Summary 265
12.13 Exercise Problems 267
References 268
Index 271