Introduction to Computation and Programming Using Python, third edition
Autor John V. Guttagen Limba Engleză Paperback – 4 ian 2021
Preț: 443.87 lei
Preț vechi: 554.83 lei
-20% Nou
Puncte Express: 666
Preț estimativ în valută:
84.95€ • 89.62$ • 70.79£
84.95€ • 89.62$ • 70.79£
Carte disponibilă
Livrare economică 09-16 decembrie
Livrare express 28 noiembrie-04 decembrie pentru 52.29 lei
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780262542364
ISBN-10: 0262542366
Pagini: 496
Ilustrații: 140
Dimensiuni: 176 x 226 x 31 mm
Greutate: 1.04 kg
Editura: The MIT Press
ISBN-10: 0262542366
Pagini: 496
Ilustrații: 140
Dimensiuni: 176 x 226 x 31 mm
Greutate: 1.04 kg
Editura: The MIT Press
Cuprins
1 GETTING STARTED
2 INTRODUCTION TO PYTHON
3 SOME SIMPLE NUMERICAL PROGRAMS
4 FUNCTIONS, SCOPING, AND ABSTRACTION
5 STRUCTURED TYPES and MUTABILITY
6 Recursion and Global variables
7 Modules and Files
8 TESTING AND DEBUGGING
9 EXCEPTIONS AND ASSERTIONS .
10 CLASSES AND OBJECT-ORIENTED PROGRAMMING
11 A SIMPLISTIC INTRODUCTION TO ALGORITHMIC COMPLEXITY
12 SOME SIMPLE ALGORITHMS AND DATA STRUCTURES .
13 PLOTTING AND MORE ABOUT CLASSES
14 KNAPSACK AND GRAPH OPTIMIZATION PROBLEMS
15 DYNAMIC PROGRAMMING
16 RANDOM WALKS AND MORE ABOUT DATA VISUALIZATION
17 STOCHASTIC PROGRAMS, PROBABILITY, AND DISTRIBUTIONS
18 MONTE CARLO SIMULATION
19 SAMPLING AND CONFIDENCE .
20 UNDERSTANDING EXPERIMENTAL DATA
21 RANDOMIZED TRIALS AND HYPOTHESIS CHECKING .
22 LIES, DAMNED LIES, AND STATISTICS
23 EXPLORING DATA WITH PANDAS
24 A QUICK LOOK AT MACHINE LEARNING
25 CLUSTERING
26 CLASSIFICATION METHODS
PYTHON 3.8 QUICK REFERENCE
INDEX
2 INTRODUCTION TO PYTHON
3 SOME SIMPLE NUMERICAL PROGRAMS
4 FUNCTIONS, SCOPING, AND ABSTRACTION
5 STRUCTURED TYPES and MUTABILITY
6 Recursion and Global variables
7 Modules and Files
8 TESTING AND DEBUGGING
9 EXCEPTIONS AND ASSERTIONS .
10 CLASSES AND OBJECT-ORIENTED PROGRAMMING
11 A SIMPLISTIC INTRODUCTION TO ALGORITHMIC COMPLEXITY
12 SOME SIMPLE ALGORITHMS AND DATA STRUCTURES .
13 PLOTTING AND MORE ABOUT CLASSES
14 KNAPSACK AND GRAPH OPTIMIZATION PROBLEMS
15 DYNAMIC PROGRAMMING
16 RANDOM WALKS AND MORE ABOUT DATA VISUALIZATION
17 STOCHASTIC PROGRAMS, PROBABILITY, AND DISTRIBUTIONS
18 MONTE CARLO SIMULATION
19 SAMPLING AND CONFIDENCE .
20 UNDERSTANDING EXPERIMENTAL DATA
21 RANDOMIZED TRIALS AND HYPOTHESIS CHECKING .
22 LIES, DAMNED LIES, AND STATISTICS
23 EXPLORING DATA WITH PANDAS
24 A QUICK LOOK AT MACHINE LEARNING
25 CLUSTERING
26 CLASSIFICATION METHODS
PYTHON 3.8 QUICK REFERENCE
INDEX