Introduction to Multiple Time Series Analysis
Autor Helmut Lütkepohlen Limba Engleză Paperback – 13 aug 1993
Preț: 401.54 lei
Nou
Puncte Express: 602
Preț estimativ în valută:
76.88€ • 80.06$ • 63.79£
76.88€ • 80.06$ • 63.79£
Carte tipărită la comandă
Livrare economică 13-27 februarie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783540569404
ISBN-10: 3540569405
Pagini: 568
Ilustrații: XXI, 545 p.
Dimensiuni: 170 x 244 x 30 mm
Greutate: 0.89 kg
Ediția:2nd ed. 1993
Editura: Springer Berlin, Heidelberg
Colecția Springer
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3540569405
Pagini: 568
Ilustrații: XXI, 545 p.
Dimensiuni: 170 x 244 x 30 mm
Greutate: 0.89 kg
Ediția:2nd ed. 1993
Editura: Springer Berlin, Heidelberg
Colecția Springer
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
1. Introduction.- 1.1 Objectives of Analyzing Multiple Time Series.- 1.2 Some Basics.- 1.3 Vector Autoregressive Processes.- 1.4 Outline of the Following Chapters.- I. Finite Order Vector Autoregressive Processes.- 2. Stable Vector Autoregressive Processes.- 3. Estimation of Vector Autoregressive Processes.- 4. VAR Order Selection and Checking the Model Adequacy.- 5. VAR Processes with Parameter Constraints.- II. Infinite Order Vector Autoregressive Processes.- 6. Vector Autoregressive Moving Average Processes.- 7. Estimation of VARMA Models.- 8. Specification and Checking the Adequacy of VARMA Models.- 9. Fitting Finite Order VAR Models to Infinite Order Processes.- III. Systems with Exogenous Variables and Nonstationary Processes.- 10. Systems of Dynamic Simultaneous Equations.- 11. Nonstationary Systems with Integrated and Cointegrated Variables.- 12. Periodic VAR Processes and Intervention Models.- 13. State Space Models.- Appendices.- Appendix A. Vectors and Matrices.- A.1 Basic Definitions.- A.2 Basic Matrix Operations.- A.3 The Determinant.- A.4 The Inverse, the Adjoint, and Generalized Inverses.- A.4.1 Inverse and Adjoint of a Square Matrix.- A.4.2 Generalized Inverses.- A.5 The Rank.- A.6 Eigenvalues and -vectors — Characteristic Values and Vectors.- A.7 The Trace.- A.8 Some Special Matrices and Vectors.- A.8.1 Idempotent and Nilpotent Matrices.- A.8.2 Orthogonal Matrices and Vectors.- A.8.3 Definite Matrices and Quadratic Forms.- A.9 Decomposition and Diagonalization of Matrices.- A.9.1 The Jordan Canonical Form.- A.9.2 Decomposition of Symmetric Matrices.- A.9.3 The Choleski Decomposition of a Positive Definite Matrix.- A.10 Partitioned Matrices.- A.11 The Kronecker Product.- A.12 The vec and vech Operators and Related Matrices.- A.12.1 The Operators.-A.12.2 The Elimination, Duplication, and Commutation Matrices.- A.13 Vector and Matrix Differentiation.- A.14 Optimization of Vector Functions.- A.15 Problems.- Appendix B. Multivariate Normal and Related Distributions.- B.1 Multivariate Normal Distributions.- B.2 Related Distributions.- Appendix C. Convergence of Sequences of Random Variables and Asymptotic Distributions.- C.1 Concepts of Stochastic Convergence.- C.2 Asymptotic Properties of Estimators and Test Statistics.- C.3 Infinite Sums of Random Variables.- C.4 Maximum Likelihood Estimation.- C.5 Likelihood Ratio, Lagrange Multiplier, and Wald Tests.- Appendix D. Evaluating Properties of Estimators and Test Statistics by Simulation and Resampling Techniques.- D.1 Simulating a Multiple Time Series with VAR Generation Process.- D.2 Evaluating Distributions of Functions of Multiple Time Series by Simulation.- D.3 Evaluating Distributions of Functions of Multiple Time Series by Resampling.- Appendix E. Data Used for Examples and Exercises.- References.- List of Propositions and Definitions.- Index of Notation.- Author Index.