Ionic Regulation in Animals: A Tribute to Professor W.T.W.Potts
Editat de Neil Hazon, F. Brian Eddy, Gert Fliken Limba Engleză Paperback – 17 sep 2011
Preț: 618.40 lei
Preț vechi: 727.52 lei
-15% Nou
Puncte Express: 928
Preț estimativ în valută:
118.34€ • 124.10$ • 98.68£
118.34€ • 124.10$ • 98.68£
Carte tipărită la comandă
Livrare economică 07-21 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642643965
ISBN-10: 3642643965
Pagini: 220
Ilustrații: XII, 204 p. 3 illus. in color.
Dimensiuni: 155 x 235 x 12 mm
Greutate: 0.31 kg
Ediția:Softcover reprint of the original 1st ed. 1997
Editura: Springer Berlin, Heidelberg
Colecția Springer
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642643965
Pagini: 220
Ilustrații: XII, 204 p. 3 illus. in color.
Dimensiuni: 155 x 235 x 12 mm
Greutate: 0.31 kg
Ediția:Softcover reprint of the original 1st ed. 1997
Editura: Springer Berlin, Heidelberg
Colecția Springer
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
1 The Ecophysiology of Osmoregulation in Crustacea.- 1.1 Introduction.- 1.2 Steady-state strategies.- 1.3 The development of osmoregulatory capacity.- 1.4 Brood pouches and osmoregulation.- 1.5 Environmental effects on crustacean osmoregulation.- 1.5.1 Effects of external [ion] or salinity.- 1.5.2 Effects of water pH change on osmoregulation.- 1.5.3 Effects of ammonia and nitrate.- 1.5.4 Other factors.- 1.6 Intraspecific difference in osmoregulation.- 1.7 Conclusions.- References.- 2 Ambient ions and the voltage across crayfish gills.- 2.1 Introduction.- 2.2 Experimental Results.- 2.2.1 Tap water medium and Amiloride.- 2.2.2 The effect of Ca2+.- 2.2.3 The effect of Na+.- 2.2.4 The effect of Cl-.- 2.3 Discussion.- 2.3.1 The TEP and ambient ion.- 2.3.2 Implication for ion transport systems.- References.- 3 Regulating the micro-environment of ion transporting epithelia: A comparative approach.- 3.1 Introduction.- 3.2 Water movements across epithelia.- 3.3 Secretion by goblet cells.- 3.4 Exocytosis, swelling and dispersal of mucus.- References.- 4 Osmotic and Ionic Osmoregulation in Cyclostomes.- 4.1 Introduction.- 4.2 Hagfish.- 4.2.1 Volume Regulation.- 4.3 Lamprey.- 4.3.1 Osmoregulation in lampreys.- 4.3.2 The lamprey kidney.- 4.3.3 Materials and Methods.- 4.3.4 Freshwater Osmoregulation.- 4.3.5 Marine Osmoregulation.- 4.3.6 Renal function.- 4.3.7 Drinking.- 4.3.8 Loss of Marine Osmoregulatory Ability after Freshwater Entry.- 4.4 Control Mechanisms.- 4.5 Conclusions.- 4.6 Acknowledgements.- References.- 5 Ion and Water Balance in Elasmobranch Fish.- 5.1 Introduction.- 5.2 Gills.- 5.2.1 Hormonal control.- 5.3 Kidney.- 5.3.1 Hormonal control.- 5.4 Gut.- 5.5 Rectal gland.- 5.6 Freshwater and Euryhaline Elasmobranchs.- 5.7 Acknowledgements.- References.- 6 Gill Chloride Cells Activation by Plasma Osmolarity.- 6.1 Introduction and Background.- 6.2 The importance of osmolarity.- 6.2.1 Changes in plasma osmolarity during the transition to high salinity.- 6.2.2 Effect of the addition of 50 mOsm of mannitol on the opercular epithelium.- 6.2.3 Dose response curves for osmolarity versus chloride current and an effect ofCa2+ concentration.- 6.2.4 Blocking of 2Cl,Na,K cotransporter eliminates the response to mannitol.- 6.2.5 Presence of the Na+/H+ exchanger and the consequences of its inhibition on the response of mannitol.- 6.2.6 Presence of the Na+/HCO-3 exchanger and its lack of participation in the hypertonic response.- 6.2.7 Blocking Cl- channels with DPC.- 6.2.8 Quantitative microscopy of chloride cells, an imaging analysis.- 6.2.9 Effects of hypotonic solutions on the chloride current.- 6.3 Conclusion.- References.- 7 The use of Modern Microscopical Techniques for the Study of Fish Gill.- 7.1 Introduction.- 7.2 Quantification of chloride cells.- 7.2.1 Chloride cell subtypes.- 7.2.2 Techniques for characterisation and quantification of chloride cells.- 7.2.3 Development of functional branchial chloride cells in larvae and juveniles.- 7.2.4 Chloride cell density in adult fish adapted to freshwater or seawater.- 7.3 Branchial ion transport in freshwater fish.- 7.3.1 X-ray microanalysis (XRMA).- 7.3.2 Intracellular elemental levels of branchial epithelial cells.- 7.3.3 Cellular location of NaCI+ and CI- uptake.- 7.3.4 Control and mechanisms of branchial ion transport.- 7.4 Perspectives.- References.- 8 Transport and Housekeeping of calcium in Fish Gills.- 8.1 Introduction.- 8.2 Overcapacity of transporters; Ca2+ transport in stanniectomized eels.- 8.3 Involvement of carriers in transepithelial Ca2+ transport.- 8.3.1 Prolactin and Ca2+ transport in tilapia.- 8.3.2 Cadmium and Ca2+ transport in trout and tilapia.- 8.3.3 NaCI+/Ca2+-exchanger and transepithelial transport.- 8.4 Housekeeping.- References.- 9 Drinking in marine, euryhaline and freshwater teleost fish.- 9.1 Introduction.- 9.2 The renin-angiotensin system and drinking in teleost fish.- 9.3 Drinking in freshwater and the role of the RAS.- 9.4 Drinking in seawater.- 9.5 Drinking in larvae.- 9.6 Absorption of water and salts in marine fish.- 9.7 Effect of cortisol on drinking.- 9.8 Effect of atrial natriuretic peptide on drinking.- 9.9 Effect of temperature on drinking.- References.- 10 Teleost Renal Function: Regulation by Arginine Vasotocin and by Angiotensins.- 10.1 Introduction.- 10.2 Renin-angiotensin system (RAS).- 10.3 Arginine vasotocin (AVT).- References.- 11 Arginine Vasotocin (AVT) Controls Renal Sodium and Water Excretion in Birds through Interaction with a new ADH Receptor Subtype.- 11.1 Body fluid homeostasis.- 11.2 The antidiuretic hormone AVT.- 11.3 AVT-induced antidiuresis and antinatriuresis.- 11.4 The renal AVT/AVP receptor in birds.- 11.5 Conclusions.- References.- 12 Intracellular signalling in salt-secreting cells — Recent Advances in the Avian Nasal Gland Model.- 12.1 Introduction.- 12.2 Mechanism of secretion.- 12.3 Intracellular calcium signalling.- 12.4 Activation of secretion by intracellular calcium.- 12.5 Activation of secretion by intracellular cyclic AMP.- 12.6 Interactions between calcium and cyclic AMP signals.- 12.7 Conclusions.- References.