Iteration Theories: The Equational Logic of Iterative Processes: Monographs in Theoretical Computer Science. An EATCS Series
Autor Stephen L. Bloom, Zoltan Esiken Limba Engleză Paperback – 16 dec 2011
Din seria Monographs in Theoretical Computer Science. An EATCS Series
- 20% Preț: 654.23 lei
- 20% Preț: 624.06 lei
- 20% Preț: 328.29 lei
- 20% Preț: 630.47 lei
- 20% Preț: 632.91 lei
- 20% Preț: 331.55 lei
- 20% Preț: 896.93 lei
- 20% Preț: 583.40 lei
- 20% Preț: 528.14 lei
- 20% Preț: 635.15 lei
- 20% Preț: 645.66 lei
- 20% Preț: 633.72 lei
- 20% Preț: 1429.09 lei
- 20% Preț: 322.96 lei
- 20% Preț: 327.37 lei
- 18% Preț: 930.00 lei
- 20% Preț: 755.59 lei
- 20% Preț: 809.89 lei
- 20% Preț: 994.95 lei
- 20% Preț: 974.11 lei
- 15% Preț: 631.77 lei
- 20% Preț: 630.29 lei
- 20% Preț: 973.29 lei
- 20% Preț: 630.16 lei
- 20% Preț: 633.55 lei
- 20% Preț: 632.08 lei
- 20% Preț: 623.85 lei
- 20% Preț: 511.90 lei
- 20% Preț: 605.80 lei
Preț: 649.54 lei
Preț vechi: 811.92 lei
-20% Nou
Puncte Express: 974
Preț estimativ în valută:
124.31€ • 129.12$ • 103.26£
124.31€ • 129.12$ • 103.26£
Carte tipărită la comandă
Livrare economică 03-17 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642780363
ISBN-10: 3642780369
Pagini: 652
Ilustrații: XV, 630 p.
Dimensiuni: 155 x 235 x 34 mm
Greutate: 0.9 kg
Ediția:Softcover reprint of the original 1st ed. 1993
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Monographs in Theoretical Computer Science. An EATCS Series
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642780369
Pagini: 652
Ilustrații: XV, 630 p.
Dimensiuni: 155 x 235 x 34 mm
Greutate: 0.9 kg
Ediția:Softcover reprint of the original 1st ed. 1993
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Monographs in Theoretical Computer Science. An EATCS Series
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
Professional/practitionerCuprins
1 Mathematical Motivation.- 2 Why Iteration Theories?.- 3 Suggestions for the Impatient Reader.- 4 A Disclaimer.- 5 Numbering.- 1 Preliminary Facts.- 1 Sets and Functions.- 2 Posets.- 3 Categories.- 4 2-Categories.- 4.1 Cellc is a 2-Category, Too.- 5 ?-Trees.- 2 Varieties and Theories.- 1 S-Algebras.- 2 Terms and Equations.- 3 Theories.- 4 The Theory of a Variety..- 3 Theory Facts.- 1 Pairing and Separated Sum.- 2 Elementary Properties of TH.- 3 Theories as N x N-Sorted Algebras.- 4 Special Coproducts.- 5 Matrix and Matricial Theories.- 6 Pullbacks and Pushouts of Base Morphisms.- 7 2-Theories.- 4 Algebras.- 1 T-algebras.- 2 Free Algebras in Tb.- 3 Subvarieties of Tb.- 4 The Categories TH and var.- 5 Notes.- 5 Iterative Theories.- 1 Ideal Theories.- 2 Iterative Theories Defined.- 3 Properties of Iteration in Iterative Theories.- 4 Free Iterative Theories.- 5 Notes.- 6 Iteration Theories.- 1 Iteration Theories Defined.- 2 Other Axiomatizations of Iteration Theories.- 3 Theories with a Functorial Dagger.- 4 Pointed Iterative Theories.- 5 Free Iteration Theories.- 6 Constructions on Iteration Theories.- 7 Feedback Theories.- 8 Summary of the Axioms.- 9 Notes.- 7 Iteration Algebras.- 1 Definitions.- 2 Free Algebras in T†.- 3 The Retraction Lemma.- 4 Some Categorical Facts.- 5 Properties of T†.- 6 A Characterization Theorem.- 7 Strong Iteration Algebras.- 8 Notes.- 8 Continuous Theories.- 1 Ordered Algebraic Theories.- 2 ?-Continuous Theoriesx.- 3 Rational Theories.- 4 Initiality and Iteration in 2-Theories.- 5 ?-Continuous 2-Theories.- 6 Notes.- 9 Matrix Iteration Theories.- 1 Notation.- 2 Properties of the Star Operation.- 3 Matrix Iteration Theories Defined.- 4 Presentations in Matrix Iteration Theories.- 5 The Initial Matrix Iteration Theory.- 6 An ExtensionTheorem.- 7 Matrix Iteration Theories of Regular Sets.- 8 Notes.- 10 Matricial Iteration Theories.- 1 From Dagger to Star and Omega, and Back.- 2 Matricial Iteration Theories Defined.- 3 Examples.- 4 Additively Closed Subiteration Theories.- 5 Presentations in Matricial Iteration Theories.- 6 The Initial Matricial Iteration Theory.- 7 The Extension Theorem.- 8 Additively Closed Theories of Regular Languages.- 9 Closed Regular (?-Languages.- 10 Notes.- 11 Presentations.- 1 Presentations in Iteration Theories.- 2 Simulations of Presentations.- 3 Coproducts Revisited.- 4 Notes.- 12 Flowchart Behaviors.- 1 Axiomatizing Sequacious Functions.- 2 Axiomatizing Partial Functions.- 3 Diagonal Theories.- 4 Sequacious Functions with Predicates.- 5 Partial Functions with Predicates.- 6 Notes.- 13 Synchronization Trees.- 1 Theories of Synchronization Trees.- 2 Grove Iteration Theories.- 3 Axiomatizing Synchronization Trees.- 4 Bisimilarity.- 5 Notes.- 14 Floyd-Hoare Logic.- 1 Guards.- 2 Partial Correctness Assertions.- 3 The Standard Example.- 4 Rules for Partial Correctness.- 5 Soundness.- 6 The Standard Example, Continued.- 7 A Floyd-Hoare Calculus for Iteration Theories.- 8 The Standard Example, Again.- 9 Completeness.- 10 Examples.- 11 Notes.- List of Symbols.