Cantitate/Preț
Produs

Knotentheorie für Einsteiger

Autor Charles Livingston Traducere de Haußer Frank
de Limba Germană Paperback – 1995

Preț: 22587 lei

Nou

Puncte Express: 339

Preț estimativ în valută:
4325 4503$ 3588£

Carte tipărită la comandă

Livrare economică 10-15 februarie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783528066604
ISBN-10: 3528066601
Pagini: 228
Ilustrații: X, 214 S. 5 Abb.
Dimensiuni: 125 x 190 x 12 mm
Greutate: 0.26 kg
Ediția:1995
Editura: Vieweg+Teubner Verlag
Colecția Vieweg+Teubner Verlag
Locul publicării:Wiesbaden, Germany

Public țintă

Upper undergraduate

Cuprins

1 Ein Jahrhundert Knotentheorie.- 2 Was ist ein Knoten?.- 2.1 „Wilde“ Knoten und triviale Knoten.- 2.2 Die Definition eines Knotens.- 2.3 Äquivalenz von Knoten, Deformationen.- 2.4 Diagramme und Projektionen.- 2.5 Orientierungen.- 3 Kombinatorische Techniken.- 3.1 Reidemeister-Bewegungen.- 3.2 Färbungen.- 3.3 Eine Verallgemeinerung der Färbbarkeit: Etikettierungen modulo p.- 3.4 Matrizen, Etikettierungen und Determinanten.- 3.5 Das Alexander-Polynom.- 4 Geometrische Techniken.- 4.1 Flächen und Homöomorphismen.- 4.2 Die Klassifikation von Flächen.- 4.3 Seifert-Flächen und das Geschlecht eines Knotens.- 4.4 Chirurgie auf Flächen.- 4.5 Zusammenhängende Summen von Knoten und Primzerlegungen.- 5 Algebraische Techniken.- 5.1 Symmetrische Gruppen.- 5.2 Knoten und Gruppen.- 5.3 Die Konjugation und der Etikettierungssatz.- 5.4 Gleichungen in Gruppen und die Gruppe eines Knotens.- 5.5 Die Fundamentalgruppe.- 6 Geometrie, Algebra und das Alexander-Polynom.- 6.1 Die Seifert-Matrix.- 6.2 Seifert-Matrizen und das Alexander-Polynom.- 6.3 Die Signatur eines Knotens und andere S-Äquivalenzinvarianten.- 6.4 Knotengruppen und das Alexander-Polynom.- 7 Numerische Invarianten.- 7.1 Zusammenfassung numerischer Invarianten.- 7.2 Neue Invarianten.- 7.3 Zöpfe und Brücken.- 7.4 Beziehungen zwischen numerischen Invarianten.- 7.5 Unabhängigkeit numerischer Invarianten.- 8 Symmetrien von Knoten.- 8.1 Amphicheirale und umkehrbare Knoten.- 8.2 Periodische Knoten.- 8.3 Die Murasugi-Bedingungen.- 8.4 Periodische Seifert-Flächen und der Satz von Edmonds.- 8.5 Anwendungen der Murasugi- und der Edmonds-Bedingungen.- 9 Hochdimensionale Knotentheorie.- 9.1 Die Definition von Knoten in höheren Dimensionen.- 9.2 Drei Dimensionen aus einer 2-dimensionalen Perspektive...- 9.3 3-dimensionaleQuerschnitte eines 4-dimensionalen Knotens.- 9.4 Scheibenknoten.- 9.5 Die Knotenkonkordanzgruppe.- 10 Neue kombinatorische Invarianten.- 10.1 Das Conway-Polynom.- 10.2 Neue polynomiale Invarianten.- 10.3 Kauffmans Klammerpolynom.- Anhang 1: Knotentafel.- Anhang 2: Alexander-Polynome.- Literaturhinweise.- Sachwortverzeichnis.

Notă biografică

Charles Livingston ist Professor für Mathematik an der Indiana University, Bloomington, Indiana, USA.