Cantitate/Preț
Produs

Kontsevich’s Deformation Quantization and Quantum Field Theory: Lecture Notes in Mathematics, cartea 2311

Autor Nima Moshayedi
en Limba Engleză Paperback – 13 aug 2022
This book provides an introduction to deformation quantization and its relation to quantum field theory, with a focus on the constructions of Kontsevich and Cattaneo & Felder.  This subject originated from an attempt to understand the mathematical structure when passing from a commutative classical algebra of observables to a non-commutative quantum algebra of observables. Developing deformation quantization as a semi-classical limit of the expectation value for a certain observable with respect to a special sigma model, the book carefully describes the relationship between the involved algebraic and field-theoretic methods. The connection to quantum field theory leads to the study of important new field theories and to insights in other parts of mathematics such as symplectic and Poisson geometry, and integrable systems.
 
Based on lectures given by the author at the University of Zurich, the book will be of interest to graduate students in mathematics or theoretical physics. Readers will be able to begin the first chapter after a basic course in Analysis, Linear Algebra and Topology, and references are provided for more advanced prerequisites.
Citește tot Restrânge

Din seria Lecture Notes in Mathematics

Preț: 49292 lei

Nou

Puncte Express: 739

Preț estimativ în valută:
9434 9723$ 7965£

Carte tipărită la comandă

Livrare economică 03-17 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783031051210
ISBN-10: 3031051211
Pagini: 336
Ilustrații: XIII, 336 p. 41 illus., 1 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.54 kg
Ediția:1st ed. 2022
Editura: Springer International Publishing
Colecția Springer
Seria Lecture Notes in Mathematics

Locul publicării:Cham, Switzerland

Cuprins

- 1. Introduction. - 2. Foundations of Differential Geometry. - 3. Symplectic Geometry. - 4. Poisson Geometry. - 5. Deformation Quantization. - 6. Quantum Field Theoretic Approach to Deformation Quantization.

Textul de pe ultima copertă

This book provides an introduction to deformation quantization and its relation to quantum field theory, with a focus on the constructions of Kontsevich and Cattaneo & Felder.  This subject originated from an attempt to understand the mathematical structure when passing from a commutative classical algebra of observables to a non-commutative quantum algebra of observables. Developing deformation quantization as a semi-classical limit of the expectation value for a certain observable with respect to a special sigma model, the book carefully describes the relationship between the involved algebraic and field-theoretic methods. The connection to quantum field theory leads to the study of important new field theories and to insights in other parts of mathematics such as symplectic and Poisson geometry, and integrable systems.
 
Based on lectures given by the author at the University of Zurich, the book will be of interest to graduate students in mathematics or theoretical physics. Readers will be able to begin the first chapter after a basic course in Analysis, Linear Algebra and Topology, and references are provided for more advanced prerequisites.

Caracteristici

Explains the connection between Kontsevich's deformation quantization and QFT Provides a concise introduction to Differential, Symplectic and Poisson Geometry Includes numerous examples and exercises