Cantitate/Preț
Produs

Large-Scale and Distributed Optimization: Lecture Notes in Mathematics, cartea 2227

Editat de Pontus Giselsson, Anders Rantzer
en Limba Engleză Paperback – 12 noi 2018
This book presents tools and methods for large-scale and distributed optimization. Since many methods in "Big Data" fields rely on solving large-scale optimization problems, often in distributed fashion, this topic has over the last decade emerged to become very important. As well as specific coverage of this active research field, the book serves as a powerful source of information for practitioners as well as theoreticians.
Large-Scale and Distributed Optimization is a unique combination of contributions from leading experts in the field, who were speakers at the LCCC Focus Period on Large-Scale and Distributed Optimization, held in Lund, 14th–16th June 2017. A source of information and innovative ideas for current and future research, this book will appeal to researchers, academics, and students who are interested in large-scale optimization.
Citește tot Restrânge

Din seria Lecture Notes in Mathematics

Preț: 42884 lei

Nou

Puncte Express: 643

Preț estimativ în valută:
8208 8919$ 68100£

Carte tipărită la comandă

Livrare economică 21 aprilie-05 mai

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783319974774
ISBN-10: 3319974777
Pagini: 373
Ilustrații: XIII, 412 p. 42 illus., 33 illus. in color.
Dimensiuni: 155 x 235 x 30 mm
Greutate: 0.59 kg
Ediția:1st ed. 2018
Editura: Springer International Publishing
Colecția Springer
Seria Lecture Notes in Mathematics

Locul publicării:Cham, Switzerland

Cuprins

- Large-Scale and Distributed Optimization: An Introduction. - Exploiting Chordality in Optimization Algorithms for Model Predictive Control. - Decomposition Methods for Large-Scale Semidefinite Programs with Chordal Aggregate Sparsity and Partial Orthogonality. - Smoothing Alternating Direction Methods for Fully Nonsmooth Constrained Convex Optimization. - Primal-Dual Proximal Algorithms for Structured Convex Optimization: A Unifying Framework. - Block-Coordinate Primal-Dual Method for Nonsmooth Minimization over Linear Constraints. - Stochastic Forward Douglas-Rachford Splitting Method for Monotone Inclusions. - Mirror Descent and Convex Optimization Problems with Non-smooth Inequality Constraints. - Frank-Wolfe Style Algorithms for Large Scale Optimization. - Decentralized Consensus Optimization and Resource Allocation. - Communication-Efficient Distributed Optimization of Self-concordantEmpirical Loss. - Numerical Construction of Nonsmooth Control Lyapunov Functions. - Convergence of an Inexact Majorization-Minimization Method for Solving a Class of Composite Optimization Problems.

Notă biografică

Pontus Giselsson is an Associate Professor at the Department of Automatic Control at Lund University, Sweden. His current research interests include mathematical optimization and its applications in, e.g., control, signal processing, and machine learning. He received a M.Sc. degree from Lund University in 2006 and a Ph.D. degree from Lund University in 2012. During 2013 and 2014, he was a postdoc at Stanford University. In 2012, he received the Young Author Price at an IFAC Symposium, in 2013 he was a finalist for the Best Student Paper Award at the American Control Conference, in 2014 he received the Young Author Price at the IFAC World Congress, and in 2015 he received the Ingvar Carlsson Award from the Swedish Foundation for Strategic Research.


Anders Rantzer received a PhD in 1991 from KTH, Stockholm, Sweden. After postdoctoral positions at KTH and at IMA, University of Minnesota, he joined Lund University in 1993 and was appointed professor of Automatic Control in 1999. The academic year of 2004/05 he was visiting associate faculty member at Caltech and 2015/16 he was Taylor Family Distinguished Visiting Professor at University of Minnesota. Since 2008 he coordinates the Linnaeus center LCCC at Lund University. Rantzer has been associate editor of IEEE Transactions on Automatic Control and several other journals. He is a winner of the SIAM Student Paper Competition, the IFAC Congress Young Author Price and the IET Premium Award for the best article in IEE Proceedings - Control Theory & Applications during 2006. He is a Fellow of IEEE and a member of the Royal Swedish Academy of Engineering Sciences. For the period 2013-15 he was also chairman of the Swedish Scientific Council for Natural and Engineering Sciences. His research interests are in modeling, analysis and synthesis of control systems, with particular attention to uncertainty, optimization and distributed control.

Textul de pe ultima copertă

This book presents tools and methods for large-scale and distributed optimization. Since many methods in "Big Data" fields rely on solving large-scale optimization problems, often in distributed fashion, this topic has over the last decade emerged to become very important. As well as specific coverage of this active research field, the book serves as a powerful source of information for practitioners as well as theoreticians.
Large-Scale and Distributed Optimization is a unique combination of contributions from leading experts in the field, who were speakers at the LCCC Focus Period on Large-Scale and Distributed Optimization, held in Lund, 14th–16th June 2017. A source of information and innovative ideas for current and future research, this book will appeal to researchers, academics, and students who are interested in large-scale optimization.

Caracteristici

Contributes to current and upcoming research on large-scale and distributed optimization Covers the increasingly important tools and methods for large-scale optimization Offers a valuable source of information to both researchers and students