Cantitate/Preț
Produs

Large-Scale PDE-Constrained Optimization: Lecture Notes in Computational Science and Engineering, cartea 30

Editat de Lorenz T. Biegler, Omar Ghattas, Matthias Heinkenschloss, Bart van Bloemen Waanders
en Limba Engleză Paperback – 5 sep 2003
Optimal design, optimal control, and parameter estimation of systems governed by partial differential equations (PDEs) give rise to a class of problems known as PDE-constrained optimization. The size and complexity of the discretized PDEs often pose significant challenges for contemporary optimization methods. With the maturing of technology for PDE simulation, interest has now increased in PDE-based optimization. The chapters in this volume collectively assess the state of the art in PDE-constrained optimization, identify challenges to optimization presented by modern highly parallel PDE simulation codes, and discuss promising algorithmic and software approaches for addressing them. These contributions represent current research of two strong scientific computing communities, in optimization and PDE simulation. This volume merges perspectives in these two different areas and identifies interesting open questions for further research.
Citește tot Restrânge

Din seria Lecture Notes in Computational Science and Engineering

Preț: 97427 lei

Preț vechi: 118814 lei
-18% Nou

Puncte Express: 1461

Preț estimativ în valută:
18645 19614$ 15557£

Carte tipărită la comandă

Livrare economică 09-23 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783540050452
ISBN-10: 3540050450
Pagini: 364
Ilustrații: VI, 349 p. 25 illus., 12 illus. in color.
Dimensiuni: 155 x 235 x 19 mm
Greutate: 0.54 kg
Ediția:Softcover reprint of the original 1st ed. 2003
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Lecture Notes in Computational Science and Engineering

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

I Introduction.- Large-Scale PDE-Constrained Optimization: An Introduction.- II Large-Scale CFD Applications.- Nonlinear Elimination in Aerodynamic Analysis and Design Optimization.- Optimization of Large-Scale Reacting Flows using MPSalsa and Sequential Quadratic Programming.- III Multifidelity Models and Inexactness.- First-Order Approximation and Model Management in Optimization.- Multifidelity Global Optimization Using DIRECT.- Inexactness Issues in the Lagrange-Newton-Krylov-Schur Method for PDE-constrained Optimization.- IV Sensitivities for PDE-based Optimization.- Solution Adapted Mesh Refinement and Sensitivity Analysis for Parabolic Partial Differential Equation Systems.- Challenges and Opportunities in Using Automatic Differentiation with Object-Oriented Toolkits for Scientific Computing.- Piggyback Differentiation and Optimization.- V NLP Algorithms and Inequality Constraints.- Assessing the Potential of Interior Methods for Nonlinear Optimization.- An Interior-Point Algorithm for Large Scale Optimization.- SQP SAND Strategies that Link to Existing Modeling Systems.- Interior Methods For a Class of Elliptic Variational Inequalities.- Hierarchical Control of a Linear Diffusion Equation.- VI Time-Dependent Problems.- A Sequential Quadratic Programming Method for Nonlinear Model Predictive Control.- Reduced Order Modelling Approaches to PDE-Constrained Optimization Based on Proper Orthogonal Decomposition.- Adaptive Simulation, the Adjoint State Method, and Optimization.- VII Frameworks for PDE-Constrained Optimization.- 18 The SIERRA Framework for Developing Advanced Parallel Mechanics Applications.- rSQP++: An Object-Oriented Framework for Successive Quadratic Programming.- Sundance Rapid Prototyping Tool for Parallel PDE Optimization.- Color Plates.

Textul de pe ultima copertă

Optimal design, optimal control, and parameter estimation of systems governed by partial differential equations (PDEs) give rise to a class of problems known as PDE-constrained optimization. The size and complexity of the discretized PDEs often pose significant challenges for contemporary optimization methods. With the maturing of technology for PDE simulation, interest has now increased in PDE-based optimization. The chapters in this volume collectively assess the state-of-the-art in PDE-constrained optimization, identify challenges to optimization presented by modern highly parallel PDE simulation codes, and discuss promising algorithmic and software approaches for addressing them. These contributions represent current research of two strong scientific computing communities, in optimization and PDE simulation. This volume merges perspectives in these two different areas and identifies interesting open questions for further research.

Caracteristici

Includes supplementary material: sn.pub/extras