Cantitate/Preț
Produs

Lattice-Gas Cellular Automata and Lattice Boltzmann Models: An Introduction: Lecture Notes in Mathematics, cartea 1725

Autor Dieter A. Wolf-Gladrow
en Limba Engleză Paperback – 18 feb 2000
Lattice-gas cellular automata (LGCA) and lattice Boltzmann models (LBM) are relatively new and promising methods for the numerical solution of nonlinear partial differential equations. The book provides an introduction for graduate students and researchers. Working knowledge of calculus is required and experience in PDEs and fluid dynamics is recommended. Some peculiarities of cellular automata are outlined in Chapter 2. The properties of various LGCA and special coding techniques are discussed in Chapter 3. Concepts from statistical mechanics (Chapter 4) provide the necessary theoretical background for LGCA and LBM. The properties of lattice Boltzmann models and a method for their construction are presented in Chapter 5.
Citește tot Restrânge

Din seria Lecture Notes in Mathematics

Preț: 47572 lei

Nou

Puncte Express: 714

Preț estimativ în valută:
9104 9575$ 7584£

Carte tipărită la comandă

Livrare economică 03-17 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783540669739
ISBN-10: 3540669736
Pagini: 324
Ilustrații: X, 314 p.
Dimensiuni: 155 x 235 x 20 mm
Greutate: 0.46 kg
Ediția:2000
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Lecture Notes in Mathematics

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

From the contents: Introduction: Preface; Overview.- The basic idea of lattice-gas cellular automata and lattice Boltzmann models. Cellular Automata: What are cellular automata?- A short history of cellular automata.- One-dimensional cellular automata.- Two-dimensional cellular automata.- Lattice-gas cellular automata: The HPP lattice-gas cellular automata.- The FHP lattice-gas cellular automata.- Lattice tensors and isotropy in the macroscopic limit.- Desperately seeking a lattice for simulations in three dimensions.- 5 FCHC.- The pair interaction (PI) lattice-gas cellular automata.- Multi-speed and thermal lattice-gas cellular automata.- Zanetti (staggered) invariants.- Lattice-gas cellular automata: What else? Some statistical mechanics: The Boltzmann equation.- Chapman-Enskog: From Boltzmann to Navier-Stokes.- The maximum entropy principle. Lattice Boltzmann Models: .... Appendix.

Caracteristici

Includes supplementary material: sn.pub/extras