Cantitate/Preț
Produs

Learning Algorithms for Internet of Things: Applying Python Tools to Improve Data Collection Use for System Performance: Maker Innovations Series

Autor G. R. Kanagachidambaresan, N Bharathi
en Limba Engleză Paperback – 28 ian 2025
This book describes learning algorithms that can be applied to IoT-based, real-time applications and improve the utilization of data collected and the overall performance of the system. The advent of Internet of Things (IoT) has paved the way for sensing the environment and smartly responding. This can be further improved by enabling intelligence to the system with the support of machine learning and deep learning techniques.
Many societal challenges and problems can be resolved using a better amalgamation of IoT and learning algorithms. “Smartness” is the buzzword that is realized only with the help of learning algorithms.
This book provides readers with an easier way to understand the purpose and application of learning algorithms on IoT. In addition, it supports researchers with code snippets that focus on the implementation and performance of learning algorithms on IoT based applications such as healthcare, agriculture, transportation, etc.
What you’lllearn
  • Machine learning, deep learning, and genetic learning algorithms for IoT.
  • Python packages for learning algorithms, such as Scipy, Scikit-learn, Theano, TensorFlow, Keras, PyTorch and more.
  • Supervised algorithms such as Regression and Classification.
  • Unsupervised algorithms, like K-means clustering, KNN, hierarchical clustering, principal component analysis, and more.
  • Artificial neural networks for IoT (architecture, feedback, feed-forward, unsupervised).
  • Convolutional neural networks for IoT (general, LeNet, AlexNet, VGGNet, GoogLeNet, etc.).
  • Optimization methods, such as gradient descent, stochastic gradient descent, Adagrad, AdaDelta, and IoT optimization.
Who This Book Is For
The audience includes students interested in learning algorithms and their implementations, as well as researchers in IoT looking to extend their work with learning algorithms.
Citește tot Restrânge

Din seria Maker Innovations Series

Preț: 22617 lei

Preț vechi: 28271 lei
-20% Nou

Puncte Express: 339

Preț estimativ în valută:
4330 4507$ 3564£

Carte nepublicată încă

Doresc să fiu notificat când acest titlu va fi disponibil:

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9798868805295
Pagini: 250
Ilustrații: Approx. 250 p.
Dimensiuni: 155 x 235 mm
Greutate: 0.45 kg
Ediția:First Edition
Editura: Apress
Colecția Apress
Seria Maker Innovations Series

Locul publicării:Berkeley, CA, United States

Cuprins

Chapter 1: Learning Algorithms for IoT.- Chapter 2: Python Packages for Learning Algorithms.- Chapter 3: Supervised Algorithms.- Chapter 4: Unsupervised Algorithms.- Chapter 5: Reinforcement Algorithms.- Chapter 6: Artificial Neural Networks for IoT.- Chapter 7: Convolutional Neural Networks for IoT.- Chapter 8: LSTM, GAN, and RNN.- Chapter 9: Optimization Methods.

Notă biografică

Dr. G. R. Kanagachidambaresan is an Associate Professor in the Department of CSE, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology. His main research interests includes Body Sensor Networks and Fault tolerant Wireless Sensor Networks. He has published several reputed articles and undertaken several consultancy activities for leading MNC companies. He has also guest edited several special issue volumes and books at Springer and serves on the editorial review board for peer reviewed journals.
He is currently working on several government-sponsored research projects like ISRO, DBT and DST. He is an ASEM-DUO Fellow and has successfully edited several books in EAI Springer. He is currently the Editor-in-Chief for the Next Generation Computer and Communication Engineering Series (Wiley). He received his B.E degree in Electrical and Electronics Engineering from Anna University in 2010 and M.E. Pervasive Computing Technologies in Anna University in 2012. He has completed his Ph.D. in Anna University Chennai in 2017.
Dr. N. BHARATHI is an Associate Professor in the Computer Science Engineering Department at SRM Institute of Science and Technology in Chennai, India. Her past experiences are Associate Professor at Saveetha School of Engineering, R&D head at Yalamanchili Manufacturing Private Limited, and Assistant professor in SASTRA deemed university. She has good knowledge to work with Internet of Things and embedded system in addition to computer science engineering concepts.
She was awarded with a Ph.D. degree in Computer Science in 2014 from SASTRA Deemed University, with 19+ years of work experience as an academic and industrial experience as R&D head involved in ARM platform boards with software development in Ubuntu OS. She completed her M. Tech in Advanced computing in SASTRA deemed University and done her M.Tech project internship at Center for High Performance Embedded System (CHiPES), Nanyang Technological University (NTU), Singapore. She was completed her B.E. in computer science engineering in 2002 at Shanmugha College of Engineering (Bharathidasan University). She published many research papers in reputed journals and conferences along with book chapters, advised many B.Tech. and M.Tech. students in various domains of computer science engineering and embedded systems and is currently advising four research scholars.

Caracteristici

Learn how the data collected through IoT can be add intelligence to the industrial or business system Understand various learning algorithms that are applied to societal challenges Implement any desired learning algorithms that suits your IoT application need