Cantitate/Preț
Produs

Lectures on Probability Theory and Statistics: Ecole d'Ete de Probabilites de Saint-Flour XXVIII - 1998: Lecture Notes in Mathematics, cartea 1738

Autor M. Emery Editat de Pierre Bernard Autor A. Nemirovski, D. Voiculescu
en Limba Engleză Paperback – 26 iun 2000
This volume contains lectures given at the Saint-Flour Summer School of Probability Theory during 17th Aug. - 3rd Sept. 1998.
The contents of the three courses are the following:
- Continuous martingales on differential manifolds.
- Topics in non-parametric statistics.
- Free probability theory.
The reader is expected to have a graduate level in probability theory and statistics. This book is of interest to PhD students in probability and statistics or operators theory as well as for researchers in all these fields. The series of lecture notes from the Saint-Flour Probability Summer School can be considered as an encyclopedia of probability theory and related fields.
Citește tot Restrânge

Din seria Lecture Notes in Mathematics

Preț: 38601 lei

Nou

Puncte Express: 579

Preț estimativ în valută:
7390 75100$ 6131£

Carte tipărită la comandă

Livrare economică 19 februarie-05 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783540677369
ISBN-10: 3540677364
Pagini: 372
Ilustrații: XIII, 349 p.
Dimensiuni: 155 x 235 x 20 mm
Greutate: 0.52 kg
Ediția:2000
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seriile Lecture Notes in Mathematics, École d'Été de Probabilités de Saint-Flour

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

Variétés, vecteurs, covecteurs, diffuseurs, codiffuseurs.- Semimartingales dans une variété et géométrie d’ordre 2.- Connexions et martingales.- Fonctions convexes et comportement des martingales.- Mouvements browniens et applications harmoniques.- Preface.- Estimating regression functions from Hölder balls.- Estimating regression functions from Sobolev balls.- Spatial adaptive estimation on Sobolev balls.- Estimating signals satisfying differential inequalities.- Aggregation of estimates, I.- Aggregation of estimates, II.- Estimating functionals, I.- Estimating functionals, II.- Noncommutative probability and operator algebra background.- Addition of freely independent noncommutative random variables.- Multiplication of freely independent noncommutative random variables.- Generalized canonical form, noncrossing partitions.- Free independence with amalgamation.- Some basic free processes.- Random matrices in the large N limit.- Free entropy.