Linear Functions and Matrix Theory: Textbooks in Mathematical Sciences
Autor Bill Jacoben Limba Engleză Paperback – 30 mar 1995
Din seria Textbooks in Mathematical Sciences
- 17% Preț: 369.06 lei
- Preț: 385.12 lei
- Preț: 370.26 lei
- Preț: 383.85 lei
- Preț: 384.75 lei
- Preț: 372.34 lei
- Preț: 297.29 lei
-
Preț: 382.16 lei
Nou
Puncte Express: 573
Preț estimativ în valută:
73.14€ • 76.24$ • 60.89£
73.14€ • 76.24$ • 60.89£
Carte tipărită la comandă
Livrare economică 04-18 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780387944517
ISBN-10: 0387944516
Pagini: 330
Ilustrații: XI, 330 p.
Dimensiuni: 178 x 254 x 17 mm
Greutate: 0.54 kg
Ediția:1995
Editura: Springer
Colecția Springer
Seria Textbooks in Mathematical Sciences
Locul publicării:New York, NY, United States
ISBN-10: 0387944516
Pagini: 330
Ilustrații: XI, 330 p.
Dimensiuni: 178 x 254 x 17 mm
Greutate: 0.54 kg
Ediția:1995
Editura: Springer
Colecția Springer
Seria Textbooks in Mathematical Sciences
Locul publicării:New York, NY, United States
Public țintă
Lower undergraduateCuprins
1 linear Functions.- 1.1 Linear Functions.- 1.2 Local Linearity.- 1.3 Matrices.- 1.4 More Linearity.- 2 Linear Geometry.- 2.1 Linear Geometry in the Plane.- 2.2 Vectors and Lines in the Plane.- 2.3 Linear Geometry in Space.- 2.4 An Introduction to Linear Perspective.- 3 Systems of Linear Equations.- 3.1 Systems of Linear Equations.- 3.2 Gaussian Elimination.- 3.3 Gauss-Jordan Elimination.- 3.4 Matrix Rank and Systems of Linear Equations.- 3.5 The Simplex Algorithm.- 4 Basic Matrix Algebra.- 4.1 The Matrix Product: A Closer Look.- 4.2 Fibonacci Numbers and Difference Equations.- 4.3 The Determinant.- 4.4 Properties and Applications of the Determinant.- 4.5 The LU-Decomposition.- 5 Key Concepts of Linear Algebra in Rn.- 5.1 Linear Combinations and Subspaces.- 5.2 Linear Independence.- 5.3 Basis and Dimension.- 6 More Vector Geometry.- 6.1 The Dot Product.- 6.2 Angles and Projections.- 6.3 The Cross Product.- 7 Eigenvalues and Eigenvectors of Matrices.- 7.1 Eigenvalues and Eigenvectors.- 7.2 Eigenspaces and Diagonalizability.- 7.3 Symmetric Matrices and Probability Matrices.- 8 Matrices as Linear Transformations.- 8.1 Linear Transformations.- 8.2 Using Linear Transformations.- 8.3 Change of Basis.- 9 Orthogonality and Least-Squares Problems.- 9.1 Orthogonality and the Gram-Schmidt Process.- 9.2 Orthogonal Projections.- 9.3 Least-Squares Approximations.- Answers to Odd-Numbered Problems.