Cantitate/Preț
Produs

Lösungsverfahren für lineare Gleichungssysteme: Algorithmen und Anwendungen: Mathematik für Ingenieure und Naturwissenschaftler, Ökonomen und Landwirte

Autor Olaf Steinbach
de Limba Germană Paperback – 15 iul 2005

Din seria Mathematik für Ingenieure und Naturwissenschaftler, Ökonomen und Landwirte

Preț: 20887 lei

Nou

Puncte Express: 313

Preț estimativ în valută:
3998 4192$ 3303£

Carte tipărită la comandă

Livrare economică 29 ianuarie-12 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783519005025
ISBN-10: 3519005026
Pagini: 200
Ilustrații: 200 S.
Dimensiuni: 170 x 240 x 12 mm
Greutate: 0.33 kg
Ediția:2005
Editura: Vieweg+Teubner Verlag
Colecția Vieweg+Teubner Verlag
Seria Mathematik für Ingenieure und Naturwissenschaftler, Ökonomen und Landwirte

Locul publicării:Wiesbaden, Germany

Public țintă

Upper undergraduate

Cuprins

1 Grundlagen.- 1.1 Normen von Vektoren und Matrizen.- 1.2 Eigenwerte und Singulärwerte.- 1.3 Orthogonalisierung von Vektorsystemen.- 1.4 Tschebyscheff-Polynome.- 2 Lineare Gleichungssysteme.- 2.1 Interpolation.- 2.2 Projektionsmethoden.- 2.3 Finite Element Methoden.- 2.4 Randelementmethoden.- 3 Strukturierte Matrizen.- 3.1 Schnelle Fouriertransformation.- 3.2 Zirkulante Matrizen.- 3.3 Toeplitz Matrizen.- 3.4 Niedrig-Rang-Störung regulärer Matrizen.- 4 Klassische Iterationsverfahren.- 4.1 Stationäre Iterationsverfahren.- 4.2 Gradientenverfahren.- 5 Verfahren orthogonaler Richtungen.- 5.1 Verfahren konjugierter Gradienten.- 5.2 Verfahren des minimalen Residuums.- 5.3 Verfahren biorthogonaler Richtungen.- 6 Gleichungssysteme mit Blockstruktur.- 6.1 Symmetrische Gleichungssysteme.- 6.2 Blockschiefsymmetrische Systeme.- 6.3 Zweifache Sattelpunktprobleme.- 7 Hierarchische Matrizen.- 7.1 Partitionierte Matrizen.- 7.2 Approximation mit Niedrigrang-Matrizen.- 7.3 Arithmetik von Hierarchischen Matrizen.- 7.4 Geometrische Partitionierungen.- 7.5 Niedrigrang-Approximation von Funktionen.- 7.6 Anwendungen in der FEM.- Literatur.

Notă biografică

Prof. Dr. Olaf Steinbach, Institut für Mathematik, TU Graz

Textul de pe ultima copertă

Die Simulation technischer Prozesse erfordert in der Regel die Lösung von linearen Gleichungssystemen großer Dimension. Hierfür werden moderne vorkonditionierte Iterationsverfahren (z.B. CG, GMRES, BiCGStab) hergeleitet und die zur Realisierung notwendigen Algorithmen beschrieben. Für Systeme mit strukturierten Matrizen werden effiziente direkte Lösungsverfahren angegeben. Neben linearen Gleichungssystemen mit Blockstrukturen werden auch Hierarchische Matrizen zur effizienten Beschreibung und Anwendung vollbesetzter Matrizen behandelt. Alle Verfahren werden an einfachen Beispielen erläutert und diskutiert.

Caracteristici

Lösungsverfahren in der Praxis: verständlich und effizient