Cantitate/Preț
Produs

Logische Grundlagen der Mathematik: Springer-Lehrbuch

Autor Ralf Schindler
de Limba Germană Paperback – 31 mar 2009
Das Buch vermittelt logisches Grundwissen, fundamentale Beweisprinzipien, Methoden und Einsichten, welche jede Mathematikerin/jeder Mathematiker besitzen sollte. Folgenden Fragestellungen wird dabei nachgegangen: Was unterscheidet endliche von unendlichen Mengen? Wie lassen sich die ganzen, rationalen und reellen Zahlen aus den natürlichen Zahlen und letztere aus reinen Mengen konstruieren? Welche grundlegenden mengentheoretischen Konstruktionen werden hierfür und überhaupt in der Mathematik gebraucht? Welche grundlegenden topologischen Eigenschaften besitzt die Menge der reellen Zahlen? Wie lautet die Kontinuumshypothese? Wofür wird das Auswahlaxiom benötigt? Lassen sich die natürlichen oder reellen Zahlen vollständig axiomatisch beschreiben? Mit Hilfe der Ultrapotenzmethode werden Nichtstandard-Zahlen konstruiert. Darüber hinaus wird ein leicht zugänglicher Beweis des Ersten Gödelschen Unvollständigkeitssatzes geliefert.
Citește tot Restrânge

Din seria Springer-Lehrbuch

Preț: 20278 lei

Nou

Puncte Express: 304

Preț estimativ în valută:
3881 4094$ 3234£

Carte tipărită la comandă

Livrare economică 03-17 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783540959311
ISBN-10: 3540959319
Pagini: 216
Ilustrații: X, 204 S. 13 Abb.
Dimensiuni: 140 x 216 x 11 mm
Greutate: 0.23 kg
Ediția:2009
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Springer-Lehrbuch

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Upper undergraduate

Cuprins

Natürliche Zahlen.- Reelle Zahlen.- Mengen.- Modelle.

Textul de pe ultima copertă

Das Buch vermittelt logisches Grundwissen, fundamentale Beweisprinzipien, Methoden und Einsichten, welche jede Mathematikerin/jeder Mathematiker besitzen sollte. Folgenden Fragestellungen wird dabei nachgegangen: Was unterscheidet endliche von unendlichen Mengen? Wie lassen sich die ganzen, rationalen und reellen Zahlen aus den natürlichen Zahlen und letztere aus reinen Mengen konstruieren? Welche grundlegenden mengentheoretischen Konstruktionen werden hierfür und überhaupt in der Mathematik gebraucht? Welche grundlegenden topologischen Eigenschaften besitzt die Menge der reellen Zahlen? Wie lautet die Kontinuumshypothese? Wofür wird das Auswahlaxiom benötigt? Lassen sich die natürlichen oder reellen Zahlen vollständig axiomatisch beschreiben? Mit Hilfe der Ultrapotenzmethode werden Nichtstandard-Zahlen konstruiert. Darüber hinaus wird ein leicht zugänglicher Beweis des Ersten Gödelschen Unvollständigkeitssatzes geliefert."

Caracteristici

Einzigartiges Buch, das die logischen Grundlagen und Grundprinzipien der Mathematik erklärt Pflichtlektüre für alle Studierenden der Mathematik, Physik und Informatik