Cantitate/Preț
Produs

Longitudinal Data Analysis Using Structural Equation Models

Autor John J. Mcardle, John R. Nesselroade
en Limba Engleză Hardback – 15 iun 2014
The authors identify five basic purposes of longitudinal structural equation modeling. For each purpose, they present the most useful strategies and models. Two important but underused approaches are emphasized: multiple factorial invariance over time and latent change scores.
Citește tot Restrânge

Preț: 57994 lei

Preț vechi: 64064 lei
-9% Nou

Puncte Express: 870

Preț estimativ în valută:
11097 11719$ 9235£

Carte indisponibilă temporar

Doresc să fiu notificat când acest titlu va fi disponibil:

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781433817151
ISBN-10: 1433817152
Pagini: 426
Dimensiuni: 203 x 261 x 28 mm
Greutate: 0.94 kg
Ediția:New.
Editura: Wiley

Cuprins

Preface
Overview
Part I: Foundations
Chapter 1: Background and Goals of Longitudinal Research
Chapter 2: Basics of Structural Equation Modeling
Chapter 3: Some Technical Details on Structural Equation Modeling
Chapter 4: Using the Simplified Reticular Action Model Notation
Chapter 5: Benefits and Problems Using Structural Equation Modeling in Longitudinal Research
Part II: Longitudinal SEM for the Direct Identification of Intraindividual Changes
Chapter 6: Alternative Definitions of Individual Changes
Chapter 7: Analyses Based on Latent Curve Models
Chapter 8: Analyses Based on Time-Series Regression Models
Chapter 9: Analyses Based on Latent Change Score Models
Chapter 10: Analyses Based on Advanced Latent Change Score Models
Part III: Longitudinal SEM for Interindividual Differences in Intraindividual Changes
Chapter 11: Studying Interindividual Differences in Intraindividual Changes
Chapter 12: Repeated Measures Analysis of Variance as a Structural Model
Chapter 13: Multilevel Structural Equation Modeling Approaches to Group Differences
Chapter 14: Multiple Group Structural Equation Modeling Approaches to Group Differences
Chapter 15: Incomplete Data With Multiple Group Modeling of Changes
Part IV: Longitudinal SEM for the Interrelationships in Growth
Chapter 16: Considering Common Factors/Latent Variables in Structural Models
Chapter 17: Considering Factorial Invariance in Longitudinal Structural Equation Modeling
Chapter 18: Alternative Common Factors With Multiple Longitudinal Observations
Chapter 19: More Alternative Factorial Solutions for Longitudinal Data
Chapter 20: Extensions to Longitudinal Categorical Factors
Part V: Longitudinal SEM for Causes (Determinants) of Intraindividual Changes
Chapter 21: Analyses Based on Cross-Lagged Regression and Changes
Chapter 22: Analyses Based on Cross-Lagged Regression in Changes of Factors
Chapter 23: Current Models for Multiple Longitudinal Outcome Scores
Chapter 24: The Bivariate Latent Change Score Model for Multiple Occasions
Chapter 25: Plotting Bivariate Latent Change Score Results
Part VI: Longitudinal SEM for Interindividual Differences in Causes (Determinants) of Intraindividual Changes
Chapter 26: Dynamic Processes Over Groups
Chapter 27: Dynamic Influences Over Groups
Chapter 28: Applying a Bivariate Change Model With Multiple Groups
Chapter 29: Notes on the Inclusion of Randomization in Longitudinal Studies
Chapter 30: The Popular Repeated Measures Analysis of Variance
Part VII: Summary and Discussion
Chapter 31: Contemporary Data Analyses Based on Planned Incompleteness
Chapter 32: Factor Invariance in Longitudinal Research
Chapter 33: Variance Components for Longitudinal Factor Models
Chapter 34: Models for Intensively Repeated Measures
Chapter 35: Coda: The Future Is Yours!
References
Index
About the Authors

Notă biografică