Longitudinal Data Analysis: Wiley Series in Probability and Statistics
Autor D Hedekeren Limba Engleză Hardback – 8 mai 2006
Din seria Wiley Series in Probability and Statistics
- 24% Preț: 742.26 lei
- 14% Preț: 722.05 lei
- 20% Preț: 512.10 lei
- 24% Preț: 701.55 lei
- 24% Preț: 1001.21 lei
- 24% Preț: 709.66 lei
- Preț: 313.49 lei
- 5% Preț: 1096.56 lei
- 24% Preț: 840.12 lei
- 24% Preț: 739.43 lei
- 14% Preț: 867.64 lei
- 20% Preț: 432.39 lei
- 24% Preț: 831.33 lei
- 24% Preț: 816.66 lei
- 20% Preț: 481.53 lei
- 8% Preț: 576.80 lei
- 14% Preț: 781.12 lei
- 20% Preț: 446.47 lei
- 20% Preț: 442.06 lei
- 24% Preț: 571.26 lei
- 24% Preț: 779.16 lei
- 24% Preț: 678.66 lei
- 24% Preț: 908.75 lei
- 9% Preț: 810.98 lei
- 24% Preț: 885.94 lei
- 24% Preț: 817.10 lei
- 9% Preț: 1001.35 lei
- 9% Preț: 1136.57 lei
- 9% Preț: 1066.44 lei
- 9% Preț: 942.97 lei
- 9% Preț: 1031.70 lei
- 9% Preț: 988.49 lei
- 9% Preț: 2204.16 lei
- 9% Preț: 2850.99 lei
- 9% Preț: 1034.64 lei
- 9% Preț: 1039.31 lei
- 9% Preț: 1675.04 lei
- 9% Preț: 1686.64 lei
- 27% Preț: 1177.00 lei
- 9% Preț: 951.03 lei
- 9% Preț: 940.82 lei
- 9% Preț: 945.68 lei
- 9% Preț: 1129.53 lei
- 9% Preț: 1256.97 lei
- 5% Preț: 1236.26 lei
- 9% Preț: 1249.84 lei
- 9% Preț: 934.43 lei
- 9% Preț: 1033.85 lei
- 9% Preț: 1104.86 lei
Preț: 977.00 lei
Preț vechi: 1073.64 lei
-9% Nou
Puncte Express: 1466
Preț estimativ în valută:
186.97€ • 194.79$ • 155.46£
186.97€ • 194.79$ • 155.46£
Carte tipărită la comandă
Livrare economică 10-24 februarie 25
Livrare express 03-09 ianuarie 25 pentru 117.81 lei
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780471420279
ISBN-10: 0471420271
Pagini: 368
Dimensiuni: 156 x 234 x 23 mm
Greutate: 0.72 kg
Editura: Wiley
Seria Wiley Series in Probability and Statistics
Locul publicării:Hoboken, United States
ISBN-10: 0471420271
Pagini: 368
Dimensiuni: 156 x 234 x 23 mm
Greutate: 0.72 kg
Editura: Wiley
Seria Wiley Series in Probability and Statistics
Locul publicării:Hoboken, United States
Public țintă
Essential reading for applied statisticians and data analysts, as well as students in applied statistics programs.Cuprins
Preface.
Acknowledgments.
Acronyms.
1. Introduction.
1.1 Advantages of Longitudinal Studies.
1.2 Challenges of Longitudinal Data Analysis.
1.3 Some General Notation.
1.4 Data Layout.
1.5 Analysis Considerations.
1.6 General Approaches.
1.7 The Simplest Longitudinal Analysis.
1.8 Summary.
2. ANOVA Approaches to Longitudinal Data.
2.1Single-Sample Repeated Measures ANOVA.
2.2 Multiple-Sample Repeated Measures ANOVA.
2.3 Illustration.
2.4 Summary.
3. MANOVA Approaches to Longitudinal Data.
3.1 Data Layout for ANOVA versus MANOVA.
3.2 MANOVA for Repeated Measurements.
3.3 MANOVA of Repeated Measures-s Sample Case.
3.4 Illustration.
3.5 Summary.
4. Mixed-Effects Regression Models for Continuous Outcomes.
4.1 Introduction.
4.2 A Simple Linear Regression Model.
4.3 Random Intercept MRM.
4.4 Random Intercept and Trend MRM.
4.5 Matrix Formulation.
4.6 Estimation .
4.7 Summary.
5. Mixed-Effects Polynomial Regression Models.
5.1 Introduction.
5.2 Curvilinear Trend Model.
5.3 Orthogonal Polynomials.
5.4 Summary.
6. Covariance Pattern Models.
6.1 Introduction.
6.2 Covariance Pattern Models.
6.3 Model Selection.
6.4 Example.
6.5 Summary.
7. Mixed Regression Models with Autocorrelated Errors.
7.1 Introduction.
7.2 MRMs with AC Errors.
7.3 Model Selection.
7.4 Example.
7.5 Summary.
8. Generalized Estimating Equations (GEE) Models.
8.1 Introduction.
8.2 Generalized Linear Models (GLMs).
8.3 Generalized Estimating Equations (GEE) Models.
8.4 GEE Estimation.
8.5 Example.
8.6 Summary.
9. Mixed-Effects Regression Models for Binary Outcomes.
9.1 Introduction.
9.2 Logistic Regression Model.
9.3 Probit Regression Models.
9.4 Threshold Concept.
9.5 Mixed-Effects Logistic Regression Model.
9.6 Estimation.
9.7 Illustration.
9.8 Summary.
10. Mixed-Effects Regression Models for Ordinal Outcomes.
10.1 Introduction.
10.2 Mixed-Effects Proportional Odds Model.
10.3 Psychiatric Example.
10.4 Health Services Research Example.
10.5 Summary.
11. Mixed-Effects Regression Models for Nominal Data.
11.1 Mixed-Effects Multinomial Regression Model.
11.2 Health Services Research Example.
1 1.3 Competing Risk Survival Models.
11.4 Summary.
12. Mixed-effects Regression Models for Counts.
12.1 Poisson Regression Model.
12.2 Modified Poisson Models.
12.3 The ZIP Model.
12.4 Mixed-Effects Models for Counts.
12.5 Illustration.
12.6 Summary.
13. Mixed-Effects Regression Models for Three-Level Data.
13.1 Three-Level Mixed-Effects Linear Regression Model.
13.1.1 Illustration.
13.2 Three-Level Mixed-Effects Nonlinear Regression Models.
13.3 Summary.
14. Missing Data in Longitudinal Studies.
14.1 Introduction.
14.2 Missing Data Mechanisms.
14.3 Models and Missing Data Mechanisms.
14.4 Testing MCAR.
14.5 Models for Nonignorable Missingness.
14.6 Summary.
Bibliography.
Topic Index.
Descriere
This text presents and describes methods for analysis of longitudinal data, with a strong emphasis on application of these methods to problems in the biomedical and behavioral sciences. Applied Longitudinal Data Analysis is geared more toward users, and not developers, of statistics.