Lp-Theory of Cylindrical Boundary Value Problems: An Operator-Valued Fourier Multiplier and Functional Calculus Approach
Autor Tobias Nauen Limba Engleză Paperback – 24 mai 2012
Preț: 374.64 lei
Nou
Puncte Express: 562
Preț estimativ în valută:
71.73€ • 74.69$ • 59.52£
71.73€ • 74.69$ • 59.52£
Carte tipărită la comandă
Livrare economică 13-27 februarie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783834825049
ISBN-10: 3834825042
Pagini: 180
Ilustrații: XVI, 188 p. 14 illus. in color.
Dimensiuni: 148 x 210 x 15 mm
Greutate: 0.25 kg
Ediția:2012
Editura: Vieweg+Teubner Verlag
Colecția Vieweg+Teubner Verlag
Locul publicării:Wiesbaden, Germany
ISBN-10: 3834825042
Pagini: 180
Ilustrații: XVI, 188 p. 14 illus. in color.
Dimensiuni: 148 x 210 x 15 mm
Greutate: 0.25 kg
Ediția:2012
Editura: Vieweg+Teubner Verlag
Colecția Vieweg+Teubner Verlag
Locul publicării:Wiesbaden, Germany
Public țintă
ResearchCuprins
Fourier Transform and Fourier Series.- Operator-valued Fourier multipliers and functional calculus.- Maximal Lp-Regularity.- Parameter-Elliptic Boundary Value Problems in Cylindrical Domains.- Periodic and Mixed Dirichlet-Neumann Boundary Conditions for the Laplacian.- Stokes Problem and Helmholtz Projection in Rectangular Cylinders.
Notă biografică
Tobias Nau earned his doctorate under the supervision of Prof. Dr. Robert Denk at the Department of Mathematics and Statistics at the University of Konstanz and is presently a member of the Faculty of Mathematics and Economics at the University of Ulm.
Textul de pe ultima copertă
Tobias Nau addresses initial boundary value problems in cylindrical space domains with the aid of modern techniques from functional analysis and operator theory. In particular, the author uses concepts from Fourier analysis of functions with values in Banach spaces and the operator-valued functional calculus of sectorial operators. He applies abstract results to concrete problems in cylindrical space domains such as the heat equation subject to numerous boundary conditions and equations arising from fluid dynamics.