Machine Learning and Artificial Intelligence in Chemical and Biological Sensing
Editat de Jeong-Yeol Yoon, Chenxu Yuen Limba Engleză Paperback – 11 iul 2024
- Presents the first comprehensive reference text on the use of ML and AI for chemical and biological sensing
- Provides a firm grounding in the fundamental theories on ML and AI before covering the practical applications with contributions by various experts in the field
- Includes a wide array of practical applications covered, including: E-nose, Raman, SERS, lens-free imaging, multi/hyperspectral imaging, NIR/optical imaging, receptor-free biosensing, paper microfluidics, single molecule analysis in biomedicine, in situ protein characterization, microbial population dynamics, and all-in-one sensor systems
Preț: 957.31 lei
Preț vechi: 1051.98 lei
-9% Nou
Puncte Express: 1436
Preț estimativ în valută:
183.27€ • 190.50$ • 151.95£
183.27€ • 190.50$ • 151.95£
Carte tipărită la comandă
Livrare economică 31 ianuarie-14 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780443220012
ISBN-10: 0443220018
Pagini: 408
Dimensiuni: 152 x 229 mm
Editura: ELSEVIER SCIENCE
ISBN-10: 0443220018
Pagini: 408
Dimensiuni: 152 x 229 mm
Editura: ELSEVIER SCIENCE
Cuprins
1. Fundamentals of Chemical Sensors and Biosensors
2. Fundamentals of Machine Learning (ML) and Artificial Intelligence (AI)
3. Use of ML/AI in Chemical Sensors and Biosensors
4. ML-Assisted E-nose and Gas Sensors
5. ML-Assisted FTIR and Raman Spectroscopic Sensing in Agricultural and Food Systems
6. ML-Assisted Surface-Enhanced Raman Spectroscopic Characterization of Biological Systems
7. AI-Assisted Microscopic Imaging Analysis for High Throughput Phenotyping
8. ML-Assisted Lens-Free Imaging
9. ML-Assisted Multispectral and Hyperspectral Imaging
10. AI/ML-Assisted NIR/Optical Biosensing for Plant Phenotyping
11. ML-Assisted Receptor-Free Biosensing
12. ML-Assisted Flow Velocity Analysis in Paper Microfluidics
13. AI/ML Tools for Single Molecule Data Analysis in Biomedicine
14. ML-Assisted Characterization of In Situ Protein Dynamics at Solid-Liquid Interfaces
15. AI-Assisted Microbial Population Dynamics Modeling
16. AI-Assisted All-in-One Sensor System
2. Fundamentals of Machine Learning (ML) and Artificial Intelligence (AI)
3. Use of ML/AI in Chemical Sensors and Biosensors
4. ML-Assisted E-nose and Gas Sensors
5. ML-Assisted FTIR and Raman Spectroscopic Sensing in Agricultural and Food Systems
6. ML-Assisted Surface-Enhanced Raman Spectroscopic Characterization of Biological Systems
7. AI-Assisted Microscopic Imaging Analysis for High Throughput Phenotyping
8. ML-Assisted Lens-Free Imaging
9. ML-Assisted Multispectral and Hyperspectral Imaging
10. AI/ML-Assisted NIR/Optical Biosensing for Plant Phenotyping
11. ML-Assisted Receptor-Free Biosensing
12. ML-Assisted Flow Velocity Analysis in Paper Microfluidics
13. AI/ML Tools for Single Molecule Data Analysis in Biomedicine
14. ML-Assisted Characterization of In Situ Protein Dynamics at Solid-Liquid Interfaces
15. AI-Assisted Microbial Population Dynamics Modeling
16. AI-Assisted All-in-One Sensor System