Machine Learning and Pattern Recognition Methods in Chemistry from Multivariate and Data Driven Modeling
Editat de Jahan B. Ghasemien Limba Engleză Paperback – 20 oct 2022
Drawing on the knowledge of a global team of researchers, this book will be a helpful guide for chemists interested in developing their skills in multivariate data and error analysis.
- Provides an introductory overview of statistical methods for the analysis and interpretation of chemical data
- Discusses the use of machine learning for recognizing patterns in multidimensional chemical data
- Identifies common sources of multivariate errors
Preț: 895.25 lei
Preț vechi: 1176.84 lei
-24% Nou
Puncte Express: 1343
Preț estimativ în valută:
171.35€ • 176.58$ • 144.66£
171.35€ • 176.58$ • 144.66£
Carte tipărită la comandă
Livrare economică 25 februarie-11 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780323904087
ISBN-10: 0323904084
Pagini: 216
Dimensiuni: 152 x 229 x 19 mm
Greutate: 0.29 kg
Editura: ELSEVIER SCIENCE
ISBN-10: 0323904084
Pagini: 216
Dimensiuni: 152 x 229 x 19 mm
Greutate: 0.29 kg
Editura: ELSEVIER SCIENCE
Cuprins
1. Statistical Methods in Chemical Data Analysis
2. Multivariate Predictive Modeling and Validation
3. Multivariate Pattern Recognition by Machine Learning Methods
4. Tuning the Apparent Thermodynamic Parameters of Chemical Systems
5. The Analytical/Measurement Sources of Multivariate Errors
6. Autoencoders in Analytical Chemistry
7. Uniqueness in Resolving Multivariate Chemical Data
Appendix 1. Introduction to Python
2. Multivariate Predictive Modeling and Validation
3. Multivariate Pattern Recognition by Machine Learning Methods
4. Tuning the Apparent Thermodynamic Parameters of Chemical Systems
5. The Analytical/Measurement Sources of Multivariate Errors
6. Autoencoders in Analytical Chemistry
7. Uniqueness in Resolving Multivariate Chemical Data
Appendix 1. Introduction to Python