Machine Learning for Spatial Environmental Data: Theory, Applications and Software
Autor Mikhail Kanevski, Alexei Pozdnoukhov, Vadim Timoninen Limba Engleză Paperback – 15 oct 2020
Preț: 969.72 lei
Preț vechi: 1212.14 lei
-20% Nou
Puncte Express: 1455
Preț estimativ în valută:
185.64€ • 193.25$ • 152.83£
185.64€ • 193.25$ • 152.83£
Carte nepublicată încă
Doresc să fiu notificat când acest titlu va fi disponibil:
Se trimite...
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9782940222247
ISBN-10: 294022224X
Pagini: 392
Dimensiuni: 159 x 241 x 28 mm
Greutate: 0.45 kg
Editura: EPFL Press
Colecția EPFL Press
ISBN-10: 294022224X
Pagini: 392
Dimensiuni: 159 x 241 x 28 mm
Greutate: 0.45 kg
Editura: EPFL Press
Colecția EPFL Press
Cuprins
Learning From Geospatial Data: Problems and Important Concepts of Machine Learning – Machine Learning Algorithms for Geospatial Data – Contents of the Book. Software Description – Short Review of the Literature / Exploratory Spatial Data Analysis: Presentation of Data and Case Studies: Exploratory Spatial Data Analysis – Data Pre-Processing – Spatial Correlations: Variography – Presentation of Data – k-Nearest Neighbours Algorithm: a Benchmark Model for Regression and Classification / Geostatistics: Spatial Predictions – Geostatistical Conditional Simulations – Spatial Classification – Software / Machine Learning Algorithms: Artificial Neural Networks: Introduction – Radial Basis Function Neural Networks – General Regression Neural Networks – Probabilistic Neural Networks – Self-Organising Maps – Gaussian Mixture Models And Mixture Density Network / Support Vector Machines And Kernel Methods: Introduction to Statistical Learning Theory – Support Vector Classification – Spatial Data Classification with SVM – Support Vector Regression – Spatial Data Mapping with SVR – Advanced Topics in Kernel Methods.