Cantitate/Preț
Produs

Magnetic Isotope Effect in Radical Reactions: An Introduction

Autor Kev M. Salikhov
en Limba Engleză Paperback – 2 aug 1996
In the last two decades it was demonstrated that, in addition to masses and charges, magnetic moments of nuclei are able to influence remarkably chemical reactions. This book presents the physical background (both theoretical and experimental) of the magnetic isotope effects in radical reactions in solutions. Special attention has been paid to the quantitative interpretation of the available experimental data.This book will be useful for physicists, chemists and biologists employing the isotope effect in their investigations as well as for those involved in isotope separation and isotope enrichment projects. Additionally, the magnetic isotope effect appears to be important in geochemistry and cosmochemistry.The book can be recommended for postgraduates and senior undergraduate students.
Citește tot Restrânge

Preț: 36596 lei

Nou

Puncte Express: 549

Preț estimativ în valută:
7004 7435$ 5836£

Carte tipărită la comandă

Livrare economică 27 decembrie 24 - 10 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783211827840
ISBN-10: 3211827846
Pagini: 160
Ilustrații: VIII, 147 p. 2 illus.
Dimensiuni: 155 x 235 x 8 mm
Greutate: 0.23 kg
Ediția:Softcover reprint of the original 1st ed. 1996
Editura: SPRINGER VIENNA
Colecția Springer
Locul publicării:Vienna, Austria

Public țintă

Research

Cuprins

1 Introduction.- 1.1 Origin of magnetic isotope effect in radical reactions.- 1.2 Favourable conditions for magnetic isotope effect.- 1.3 Some specific features of magnetic isotope effect.- 1.4 What can be gained from magnetic isotope effect?.- 1.5 Basic steps in studying magnetic isotope effect.- 2 Main concepts of the theory of magnetic isotope effect.- 2.1 Macroscopic and microscopic parameters.- 2.2 Radical pairs.- 2.3 Multiplicity and reactivity of radical pairs.- 2.4 The hyperfine coupling.- 2.5 Singlet-triplet transitions in radical pairs induced by the hyperfine interaction.- 2.6 Manifestations of radical pair spin conservation rules in singlet-triplet mixing induced by the isotropic hyperfine coupling.- 2.7 Kinetic equations for radical pair recombination.- 3 Theoretical description of magnetic isotope effect in the Earth’s magnetic field.- 3.1 Radical pairs with one magnetic nucleus (isotropic hyperfine coupling).- 3.2 Radical pairs with magnetically equivalent nuclei (isotropic hyperfine coupling).- 3.3 Radical pairs with many magnetically non-equivalent nuclei (isotropic hyperfine coupling).- 3.4 Magnetic isotope effect induced by the anisotropic hyperfine interaction (paramagnetic relaxation).- 3.5 Magnetic isotope effect in reaction kinetics.- 4 Magnetic isotope effect in the presence of external magnetic fields.- 4.1 Magnetic isotope effect as affected by constant fields.- 4.2 Resonant microwave field pumping.- 5 Experimental evidences of magnetic isotope effect.- 5.1 Enrichment of 13C in dibenzyl ketone during photolysis.- 5.2 Magnetic isotope effect in radiolysis of aromatic hydrocarbon solutions in alkanes.- 5.3 Magnetic isotope effect for heavy elements.- 5.4 Magnetic isotope effect for biradical reaction pathways.- 5.5 Magnetic isotope effect inreaction rates.- 5.6 Isotope enrichment by resonant microwave pumping.- 6 Some perspectives.- References.