Cantitate/Preț
Produs

Many-Body Effects and Electrostatics in Biomolecules

Editat de Qiang Cui, Markus Meuwly, Pengyu Ren
en Limba Engleză Hardback – 14 mar 2016
As computational hardware continues to develop at a rapid pace, quantitative computations are playing an increasingly essential role in the study of biomolecular systems. One of the most important challenges that the field faces is to develop the next generation of computational models that strike the proper balance of computational efficiency and accuracy, so that the problems of increasing complexity can be tackled in a systematic and physically robust manner. In particular, properly treating intermolecular interactions is fundamentally important for the reliability of all computational models. In this book, contributions by leading experts in the area of biomolecular simulations discuss cutting-edge ideas regarding effective strategies to describe many-body effects and electrostatics at quantum, classical, and coarse-grained levels. The goal of the book is to not only provide an up-to-date snapshot of the current simulation field but also stimulate exchange of ideas across different sub-fields of modern computational (bio)chemistry. The text will be a useful reference for the biomolecular simulation community and help attract talented young students into this exciting frontier of research.
Citește tot Restrânge

Preț: 102269 lei

Preț vechi: 137213 lei
-25% Nou

Puncte Express: 1534

Preț estimativ în valută:
19572 20330$ 16258£

Comandă specială

Livrare economică 13-27 ianuarie 25

Doresc să fiu notificat când acest titlu va fi disponibil:

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9789814613927
ISBN-10: 9814613924
Pagini: 596
Ilustrații: 84
Dimensiuni: 152 x 229 mm
Greutate: 0.98 kg
Ediția:1
Editura: Jenny Stanford Publishing
Colecția Jenny Stanford Publishing

Public țintă

Academic and Postgraduate

Cuprins

QM and QM/MM Methods. Polarizable continuum models for (bio)molecular electrostatics: Basic theory and recent developments for macromolecules and simulations. A modified divide-and-conquer linear-scaling quantum force field with multipolar charge densities. Explicit polarization theory. Effective fragment potential method. Quantum mechanical methods for quantifying and analyzing non-covalent interactions and for force-field development. Force field development with density-based energy decomposition analysis. Atomistic Models. Differential geometry-based solvation and electrolyte transport models for biomolecular modeling: a review. Explicit inclusion of induced polarization in atomistic force fields based on the classical Drude oscillator model. Multipolar force fields for atomistic simulations. Quantum mechanics based polarizable force field for proteins. Status of the Gaussian electrostatic model, a density-based polarizable force field. Water models: Looking forward by looking backward. Coarse-Grained Models. A physics-based coarse-grained model with electric multipoles. Coarse-grained membrane force field based on Gay–Berne potential and electric multipoles. Perspectives on the coarse-grained models of DNA. RNA coarse-grained model theory.

Recenzii

"This book is a state-of-the-art report on the description of molecular energetics using force fields, which are the most critical element in computer simulations of biomolecular systems. The 16 chapters, written by leaders in the field, provide in-depth reports on all important current issues, including the representation of polarization, quantum mechanics-based force fields, and coarse-grained approaches for RNA, DNA, and membranes. This is an important reference for anyone involved in computational studies in chemistry and biology, especially those who want a deeper understanding of the underlying representations of intra- and intermolecular energetics."
—Prof. William L. Jorgensen, Yale University, USA

Notă biografică

Qiang Cui is professor of chemistry at the University of Wisconsin-Madison, USA. He is interested in developing theoretical/computational methods for the analysis of biomolecular systems, especially concerning chemical reactions in enzymes, energy transduction in biomolecular machines, and, more recently, interaction between biomolecules, lipids, and inorganic materials.
Markus Meuwly is professor of physical and computational chemistry at the Department of Chemistry of the University of Basel and adjunct research professor at Brown University, USA. He is interested in developing computational/theoretical methods for quantitative atomistic simulations, specifically multipolar force fields and reactive processes in complex systems.

Descriere

An important challenge that the field faces is to develop the next generation of computational models that strike the proper balance of computational efficiency and accuracy, so that problems of increasing complexity can be tackled in a systematic, robust manner. With contributions by leading experts in the area of biomolecular simulations, this book discusses cutting-edge ideas regarding effective strategies to describe many-body effects and electrostatics at quantum, classical, and coarse-grained levels. It not only provides an up-to-date snapshot of the current simulation field but also stimulates exchange of ideas across different sub-fields of modern computational (bio)chemistry.