Materials for Ultra-Supercritical and Advanced Ultra-Supercritical Power Plants
Editat de Augusto Di Gianfrancescoen Limba Engleză Hardback – 8 sep 2016
The transition from conventional subcritical to supercritical thermal power plants greatly increased power generation efficiency. Now the introductions of the ultra-supercritical (USC) and, in the near future, advanced ultra-supercritical (A-USC) designs are further efforts to reduce fossil fuel consumption in power plants and the associated carbon dioxide emissions. The higher operating temperatures and pressures found in these new plant types, however, necessitate the use of advanced materials.
- Provides researchers in academia and industry with an authoritative and systematic overview of the stronger high-temperature materials required for both ultra-supercritical and advanced ultra-supercritical power plants
- Covers materials for critical components in ultra-supercritical power plants, such as boilers, rotors, and turbine blades
- Addresses advanced materials for future advanced ultra-supercritical power plants, such as superalloys, new martensitic and austenitic steels
- Includes chapters on technologies for welding technologies
Preț: 1336.08 lei
Preț vechi: 1754.97 lei
-24% Nou
Puncte Express: 2004
Preț estimativ în valută:
255.71€ • 269.76$ • 213.10£
255.71€ • 269.76$ • 213.10£
Carte tipărită la comandă
Livrare economică 26 decembrie 24 - 09 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780081005521
ISBN-10: 0081005520
Pagini: 900
Dimensiuni: 152 x 229 x 51 mm
Greutate: 1.36 kg
Editura: ELSEVIER SCIENCE
ISBN-10: 0081005520
Pagini: 900
Dimensiuni: 152 x 229 x 51 mm
Greutate: 1.36 kg
Editura: ELSEVIER SCIENCE
Cuprins
1. The fossil fuel power plants technology
Part One. Ultra-supercritical power plant materials 2. Low-alloyed steel grades for boilers in ultra-supercritical power plants 3. High-alloyed martensitic steel grades for boilers in ultra-supercritical power plants 4. Austenitic steel grades for boilers in ultra-supercritical power plants 5. Martensitic steels for cast components in ultra-supercritical power plants 6. Martensitic steels for rotors in ultra-supercritical power plants 7. Steels and alloys for turbine blades in ultra-supercritical power plants 8. Technologies for chemical analyses, microstructural and inspection investigations 9. Welding technologies for ultra-supercritical power plant materials
Part Two. Advanced ultra-supercritical power plant materials 10. New martensitic steels 11. New austenitic steels for the advanced USC power plants 12. Sanicro 25: An advanced high-strength, heat-resistant austenitic stainless steel 13. New Japanese materials for A-USC power plants 14. INCONEL alloy 740H 15. HAYNES 282 alloy 16. Alloy 617 and derivatives 17. Alloy 263 18. Welding technologies for advanced ultra-supercritical power plants materials
Part Three. Materials’ development programs worldwide 19. Worldwide overview and trend for clean and efficient use of coal 20. The US DOE/OCDO A-USC materials technology R&D program 21. The Chinese 700°C A-USC development program 22. Advanced USC technology development in Japan 23. A-USC R&D programs in other countries 24. A-USC programs in the European Union
Part One. Ultra-supercritical power plant materials 2. Low-alloyed steel grades for boilers in ultra-supercritical power plants 3. High-alloyed martensitic steel grades for boilers in ultra-supercritical power plants 4. Austenitic steel grades for boilers in ultra-supercritical power plants 5. Martensitic steels for cast components in ultra-supercritical power plants 6. Martensitic steels for rotors in ultra-supercritical power plants 7. Steels and alloys for turbine blades in ultra-supercritical power plants 8. Technologies for chemical analyses, microstructural and inspection investigations 9. Welding technologies for ultra-supercritical power plant materials
Part Two. Advanced ultra-supercritical power plant materials 10. New martensitic steels 11. New austenitic steels for the advanced USC power plants 12. Sanicro 25: An advanced high-strength, heat-resistant austenitic stainless steel 13. New Japanese materials for A-USC power plants 14. INCONEL alloy 740H 15. HAYNES 282 alloy 16. Alloy 617 and derivatives 17. Alloy 263 18. Welding technologies for advanced ultra-supercritical power plants materials
Part Three. Materials’ development programs worldwide 19. Worldwide overview and trend for clean and efficient use of coal 20. The US DOE/OCDO A-USC materials technology R&D program 21. The Chinese 700°C A-USC development program 22. Advanced USC technology development in Japan 23. A-USC R&D programs in other countries 24. A-USC programs in the European Union