Mathematical Modelling and Computers in Endocrinology: Monographs on Endocrinology, cartea 16
Autor Rosalind McIntoshen Limba Engleză Paperback – 16 dec 2011
Din seria Monographs on Endocrinology
- 18% Preț: 707.66 lei
- 5% Preț: 695.72 lei
- 5% Preț: 695.16 lei
- 5% Preț: 725.81 lei
- 5% Preț: 691.07 lei
- 5% Preț: 701.61 lei
- 5% Preț: 703.57 lei
- 5% Preț: 699.28 lei
- 5% Preț: 695.16 lei
- 5% Preț: 693.38 lei
- 5% Preț: 387.56 lei
- 15% Preț: 631.77 lei
- 5% Preț: 697.85 lei
- 5% Preț: 354.88 lei
- 5% Preț: 695.00 lei
- 5% Preț: 700.18 lei
- 5% Preț: 692.13 lei
- 5% Preț: 697.85 lei
- 5% Preț: 753.56 lei
- 5% Preț: 723.63 lei
- 5% Preț: 708.08 lei
- 5% Preț: 708.78 lei
- 5% Preț: 397.95 lei
- 15% Preț: 624.71 lei
- 5% Preț: 702.35 lei
- 5% Preț: 706.97 lei
- 5% Preț: 694.46 lei
- 5% Preț: 716.85 lei
- 5% Preț: 696.58 lei
- 5% Preț: 697.15 lei
- 5% Preț: 698.20 lei
- 5% Preț: 353.62 lei
Preț: 707.16 lei
Preț vechi: 744.39 lei
-5% Nou
Puncte Express: 1061
Preț estimativ în valută:
135.35€ • 140.69$ • 112.12£
135.35€ • 140.69$ • 112.12£
Carte tipărită la comandă
Livrare economică 05-19 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642814037
ISBN-10: 3642814034
Pagini: 356
Ilustrații: XII, 340 p.
Dimensiuni: 170 x 244 x 19 mm
Greutate: 0.57 kg
Ediția:Softcover reprint of the original 1st ed. 1980
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Monographs on Endocrinology
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642814034
Pagini: 356
Ilustrații: XII, 340 p.
Dimensiuni: 170 x 244 x 19 mm
Greutate: 0.57 kg
Ediția:Softcover reprint of the original 1st ed. 1980
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Monographs on Endocrinology
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
1 Modelling in Biology.- 1.1 The Nature of Scientific Models.- 1.2 Clarity from Complexity.- 1.3 Experimental Data.- 1.4 Predictions from Models — Simulation.- 1.5 A Model of Complexity Producing Organized Simplicity.- 1.6 Subjectivity in Modelling.- 1.7 Mathematics in Modelling.- 1.8 Computers and Models.- 1.9 Description of Models.- 1.10 Modelling in Perspective.- 1.11 Advantages in Modelling.- 2 Mathematical Descriptions of Biological Models.- 2.1 Theoretical Modelling — Analysis of Mechanism.- 2.2 Linearity and Non-Linearity.- 2.3 Empirical Modelling — a Description of System Response.- 2.4 Point Stability in Models.- 2.5 Concepts of Feedback.- 2.6 Biological Development and Mathematics Beyond Instability.- 2.7 Finite Level Modelling.- 2.8 The Need for Statistics.- 3 Comparing Models with Experimental Results.- 3.1 Analogue Simulation.- 3.2 Approximate Simulation by Digital Computer.- 3.3 Suitable Digital Computers.- 3.4 Estimation of Parameters.- 3.5 Practical Details of Fitting Non-Linear Models to Data.- 3.6 Models Containing Differential Equations.- 3.7 Using the Computer to Fit Models to Data.- 4 Design of Analytical Experiments.- 4.1 Principles of Design.- 4.2 Sequential Design.- 5 Dynamic Systems: Clearance and Compartmental Analysis.- 5.1 Clearance.- 5.2 Compartmental Analysis.- 6 Ligand—Protein Interaction and Competitive Displacement Assays.- 6.1 Interactions Between Ligands and Macromolecules.- 6.2 Competitive Protein-Binding Assays.- 7 Mathematical Modelling of Biological Rhythms.- 7.1 Biological Rhythms: Experimental Evidence.- 7.2 The Contribution of Mathematics.- 7.3 Response of Rhythms to Stimuli — Rhythm Coupling.- 7.4 Rhythms, Endocrinology and Biological Control.- 7.5 Empirical Characterization of Rhythms from Data.- 8 Large Systems:Modelling Ovulatory Cycles.- 8.1 Modelling the Ovulatory Cycle.- 8.2 A Description of the Ovulatory Cycle.- 8.3 Use of Differential Equations with Cyclic Solutions.- 8.4 Use of a Threshold Discontinuity to Produce Cyclicity.- 8.5 A Physiologically Based Model of the Rat Oestrous Cycle.- 8.6 An Empirical Model of the Rat Oestrous Cycle Controlled by Time.- 8.7 An Attempt to Include More Variables.- 8.8 Eliminating the Differential Equations: A Finite Level Model.- 8.9 A “Complete” Description.- 8.10 Conclusions.- 9 Stochastic Models.- 9.1 Non-Parametric Statistical Models.- 9.2 Multivariate Analysis.- 10 Appendix A: A Summary of Relevant Statistics.- 10.1 Variance, Standard Deviation and Weight.- 10.2 The Propagation of Variance.- 10.3 Covariance and Correlation.- 10.4 z-Scores, or Standardized Measures.- 10.5 Testing Hypotheses.- 10.6 Runs-Test.- 10.7 Chi-Square Test.- 10.8 Tests of Normality of Distribution.- 10.9 Comparing Two Parameters: The r-Test.- 10.10 Comparing Any Number of Parameters: Analysis of Variance.- 10.11 The Variance Ratio or F-Test.- 10.12 Confidence Intervals.- 10.13 Control Charts.- 11 Appendix B: Computer Programs.- 11.1 MODFIT: A General Model-Fitting Program.- 11.2 SIMUL: A Program for Monte Carlo Simulation.- 11.3 FUNCTN Subprogram RESERVR: Exponential Decay.- 11.4 FUNCTN Subprogram EXPCUBE: Growth of Organisms.- 11.5 FUNCTN Subprogram POLYNOM: General Polynomial.- 11.6 FUNCTN Subprogram FOLL: Growth of Ovarian Follicles.- 11.7 DESIGN: A Program for Efficient Experimental Design.- 11.8 FUNCTN Subprogram CAI: Compartmental Analysis.- 11.9 FUNCTN Subprogram CA2: Compartmental Analysis.- 11.10 FUNCTN Subprogram CA2A: Compartmental Analysis.- 11.11 FUNCTN Subprogram CA3: Compartmental Analysis.- 11.12 FUNCTN Subprogram MASSACT: LigandBinding.- 11.13 FUNCTN Subprogram GENBIND: Ligand Binding.- 11.14 FUNCTN Subprogram RIA: Competitive Protein-Binding.- 11.15 FUNCTN Subprogram RIAH: Competitive Protein-Binding.- 11.16 FUNCTN Subprogram SIN: Rhythmical Data.- 11.17 FUNCTN Subprogram LIMIT: Limit Cycles.- 11.18 Other Programs for Fitting Non-Linear Models to Data.- 12 Appendix C: Analytical Integration by Laplace Transform.- References.